Special sensesIn medicine and anatomy, the special senses are the senses that have specialized organs devoted to them: vision (the eye) hearing and balance (the ear, which includes the auditory system and vestibular system) smell (the nose) taste (the tongue) The distinction between special and general senses is used to classify nerve fibers running to and from the central nervous system – information from special senses is carried in special somatic afferents and special visceral afferents.
Cluster headacheCluster headache (CH) is a neurological disorder characterized by recurrent severe headaches on one side of the head, typically around the eye(s). There is often accompanying eye watering, nasal congestion, or swelling around the eye on the affected side. These symptoms typically last 15 minutes to 3 hours. Attacks often occur in clusters which typically last for weeks or months and occasionally more than a year. The cause is unknown. Risk factors include a history of exposure to tobacco smoke and a family history of the condition.
Trigeminal neuralgiaTrigeminal neuralgia (TN or TGN), also called Fothergill disease, tic douloureux, or trifacial neuralgia is a long-term pain disorder that affects the trigeminal nerve, the nerve responsible for sensation in the face and motor functions such as biting and chewing. It is a form of neuropathic pain. There are two main types: typical and atypical trigeminal neuralgia. The typical form results in episodes of severe, sudden, shock-like pain in one side of the face that lasts for seconds to a few minutes.
Temporalis muscleIn anatomy, the temporalis muscle, also known as the temporal muscle, is one of the muscles of mastication (chewing). It is a broad, fan-shaped convergent muscle on each side of the head that fills the temporal fossa, superior to the zygomatic arch so it covers much of the temporal bone.Temporal refers to the head's temples. In humans, the temporalis muscle arises from the temporal fossa and the deep part of temporal fascia. This is a very broad area of attachment. It passes medial to the zygomatic arch.
Pharyngeal reflexThe pharyngeal reflex or gag reflex is a reflex muscular contraction of the back of the throat, evoked by touching the roof of the mouth, back of the tongue, area around the tonsils, uvula, and back of the throat. It, along with other aerodigestive reflexes such as reflexive pharyngeal swallowing, prevents objects in the oral cavity from entering the throat except as part of normal swallowing and helps prevent choking, and is a form of coughing. The pharyngeal reflex is different from the laryngeal spasm, which is a reflex muscular contraction of the vocal cords.
Olfactory epitheliumThe olfactory epithelium is a specialized epithelial tissue inside the nasal cavity that is involved in smell. In humans, it measures and lies on the roof of the nasal cavity about above and behind the nostrils. The olfactory epithelium is the part of the olfactory system directly responsible for detecting odors. Olfactory epithelium consists of four distinct cell types: Olfactory sensory neurons Supporting cells Basal cells Brush cells Olfactory receptor neuron The olfactory receptor neurons are sensory neurons of the olfactory epithelium.
Medial lemniscusIn neuroanatomy, the medial lemniscus, also known as Reil's band or Reil's ribbon (for German anatomist Johann Christian Reil), is a large ascending bundle of heavily myelinated axons that decussate (cross) in the brainstem, specifically in the medulla oblongata. The medial lemniscus is formed by the crossings of the internal arcuate fibers. The internal arcuate fibers are composed of axons of nucleus gracilis and nucleus cuneatus. The axons of the nucleus gracilis and nucleus cuneatus in the medial lemniscus have cell bodies that lie contralaterally.
ChewingChewing or mastication is the process by which food is crushed and ground by teeth. It is the first step of digestion, and it increases the surface area of foods to allow a more efficient break down by enzymes. During the mastication process, the food is positioned by the cheek and tongue between the teeth for grinding. The muscles of mastication move the jaws to bring the teeth into intermittent contact, repeatedly occluding and opening. As chewing continues, the food is made softer and warmer, and the enzymes in saliva begin to break down carbohydrates in the food.
Digastric muscleThe digastric muscle (also digastricus) (named digastric as it has two 'bellies') is a bilaterally paired suprahyoid muscle located under the jaw. Its posterior belly is attached to the mastoid notch of temporal bone, and its anterior belly is attached to the digastric fossa of mandible; the two bellies are united by an intermediate tendon which is held in a loop that attaches to the hyoid bone. The anterior belly is innervated via the mandibular nerve (cranial nerve V), and the posterior belly is innervated bia the facial nerve (cranial nerve VII).
Optic chiasmIn neuroanatomy, the optic chiasm, or optic chiasma (pronQptIk_kaIaezəm; , ), is the part of the brain where the optic nerves cross. It is located at the bottom of the brain immediately inferior to the hypothalamus. The optic chiasm is found in all vertebrates, although in cyclostomes (lampreys and hagfishes), it is located within the brain. This article is about the optic chiasm of vertebrates, which is the best known nerve chiasm, but not every chiasm denotes a crossing of the body midline (e.g.