The olfactory epithelium is a specialized epithelial tissue inside the nasal cavity that is involved in smell. In humans, it measures
and lies on the roof of the nasal cavity about above and behind the nostrils. The olfactory epithelium is the part of the olfactory system directly responsible for detecting odors.
Olfactory epithelium consists of four distinct cell types:
Olfactory sensory neurons
Supporting cells
Basal cells
Brush cells
Olfactory receptor neuron
The olfactory receptor neurons are sensory neurons of the olfactory epithelium. They are bipolar neurons and their apical poles express odorant receptors on non-motile cilia at the ends of the dendritic knob, which extend out into the airspace to interact with odorants. Odorant receptors bind odorants in the airspace, which are made soluble by the serous secretions from olfactory glands located in the lamina propria of the mucosa. The axons of the olfactory sensory neurons congregate to form the olfactory nerve (CN I). Once the axons pass through the cribriform plate, they terminate and synapse with the dendrites of mitral cells in the glomeruli of the olfactory bulb.
Analogous to neural glial cells, the supporting cells are non-neural cells in the olfactory epithelium that are located in the apical layer of the pseudostratified ciliated columnar epithelium. There are two types of supporting cells in the olfactory epithelium: sustentacular cells and microvillar cells. The sustentacular cells function as metabolic and physical support for the olfactory epithelium. Microvillar cells are another class of supporting cells that are morphologically and biochemically distinct from the sustentacular cells, and arise from a basal cell population that expresses the c-KIT cell surface protein.
Resting on or near the basal lamina of the olfactory epithelium, basal cells are stem cells capable of division and differentiation into either supporting or olfactory cells. While some of these basal cells divide rapidly, a significant proportion remain relatively quiescent and replenish olfactory epithelial cells as needed.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The goal of the course is to guide students through the essential aspects of molecular neuroscience and neurodegenerative diseases. The student will gain the ability to dissect the molecular basis of
The sense of smell, or olfaction, is the special sense through which smells (or odors) are perceived. The sense of smell has many functions, including detecting desirable foods, hazards, and pheromones, and plays a role in taste. In humans, it occurs when an odor binds to a receptor within the nasal cavity, transmitting a signal through the olfactory system. Glomeruli aggregate signals from these receptors and transmit them to the olfactory bulb, where the sensory input will start to interact with parts of the brain responsible for smell identification, memory, and emotion.
The olfactory nerve, also known as the first cranial nerve, cranial nerve I, or simply CN I, is a cranial nerve that contains sensory nerve fibers relating to the sense of smell. The afferent nerve fibers of the olfactory receptor neurons transmit nerve impulses about odors to the central nervous system (olfaction). Derived from the embryonic nasal placode, the olfactory nerve is somewhat unusual among cranial nerves because it is capable of some regeneration if damaged.
An olfactory receptor neuron (ORN), also called an olfactory sensory neuron (OSN), is a sensory neuron within the olfactory system. Humans have between 10 and 20 million olfactory receptor neurons (ORNs). In vertebrates, ORNs are bipolar neurons with dendrites facing the external surface of the cribriform plate with axons that pass through the cribriform foramina with terminal end at olfactory bulbs. The ORNs are located in the olfactory epithelium in the nasal cavity.
Delves into the mechanisms of scent-tracking in humans, exploring inter-nastril comparison, sniffing behavior, and the exploitation of information from both nostrils.
Explores the anatomy of the tongue's papillae and taste perception mechanisms.
Explores Parkinson's disease pathology, progression, spreading mechanisms, and initiation sites.
Rodents depend on olfaction and touch to meet many of their fundamental needs. However, the impact of simultaneous olfactory and tactile inputs on sensory representations in the cortex remains elusive. To study these interactions, we recorded large populat ...
NATURE PORTFOLIO2022
, , ,
Background Braak's hypothesis states that sporadic Parkinson's disease (PD) follows a specific progression of pathology from the peripheral to the central nervous system, and this progression can be monitored by detecting the accumulation of alpha-Synuclei ...
Otoliths are calcium carbonate components of the stato-acoustical organ responsible for hearing and maintenance of the body balance in teleost fish. During their formation, control over, e.g., morphology and carbonate polymorph is influenced by complex ins ...