Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
In statistics, L-moments are a sequence of statistics used to summarize the shape of a probability distribution. They are linear combinations of order statistics (L-statistics) analogous to conventional moments, and can be used to calculate quantities analogous to standard deviation, skewness and kurtosis, termed the L-scale, L-skewness and L-kurtosis respectively (the L-mean is identical to the conventional mean). Standardised L-moments are called L-moment ratios and are analogous to standardized moments. Just as for conventional moments, a theoretical distribution has a set of population L-moments. Sample L-moments can be defined for a sample from the population, and can be used as estimators of the population L-moments. For a random variable X, the rth population L-moment is where Xk:n denotes the kth order statistic (kth smallest value) in an independent sample of size n from the distribution of X and denotes expected value. In particular, the first four population L-moments are Note that the coefficients of the k-th L-moment are the same as in the k-th term of the binomial transform, as used in the k-order finite difference (finite analog to the derivative). The first two of these L-moments have conventional names: The L-scale is equal to half the Mean absolute difference. The sample L-moments can be computed as the population L-moments of the sample, summing over r-element subsets of the sample hence averaging by dividing by the binomial coefficient: Grouping these by order statistic counts the number of ways an element of an n-element sample can be the jth element of an r-element subset, and yields formulas of the form below. Direct estimators for the first four L-moments in a finite sample of n observations are: where x(i) is the ith order statistic and is a binomial coefficient. Sample L-moments can also be defined indirectly in terms of probability weighted moments, which leads to a more efficient algorithm for their computation. A set of L-moment ratios, or scaled L-moments, is defined by The most useful of these are , called the L-skewness, and , the L-kurtosis.
Kathryn Hess Bellwald, Lida Kanari, Adélie Eliane Garin
Jian Wang, Matthias Finger, Qian Wang, Yiming Li, Matthias Wolf, Varun Sharma, Yi Zhang, Konstantin Androsov, Jan Steggemann, Leonardo Cristella, Xin Chen, Davide Di Croce, Rakesh Chawla, Matteo Galli, Anna Mascellani, João Miguel das Neves Duarte, Tagir Aushev, Tian Cheng, Yixing Chen, Werner Lustermann, Andromachi Tsirou, Alexis Kalogeropoulos, Andrea Rizzi, Ioannis Papadopoulos, Paolo Ronchese, Hua Zhang, Siyuan Wang, Tao Huang, David Vannerom, Michele Bianco, Sebastiana Gianì, Sun Hee Kim, Kun Shi, Abhisek Datta, Jian Zhao, Federica Legger, Gabriele Grosso, Ji Hyun Kim, Donghyun Kim, Zheng Wang, Sanjeev Kumar, Wei Li, Yong Yang, Geng Chen, Ajay Kumar, Ashish Sharma, Georgios Anagnostou, Joao Varela, Csaba Hajdu, Muhammad Ahmad, Ekaterina Kuznetsova, Ioannis Evangelou, Muhammad Shoaib, Milos Dordevic, Meng Xiao, Sourav Sen, Xiao Wang, Kai Yi, Jing Li, Rajat Gupta, Muhammad Waqas, Hui Wang, Seungkyu Ha, Long Wang, Pratyush Das, Miao Hu, Anton Petrov, Xin Sun, Xin Gao, Valérie Scheurer, Giovanni Mocellin, Muhammad Ansar Iqbal, Lukas Layer