A species description is a formal scientific description of a newly encountered species, usually in the form of a scientific paper. Its purpose is to give a clear description of a new species of organism and explain how it differs from species that have been described previously or are related. To be considered valid, a species description must follow guidelines established over time. Naming requires adherence to respective codes, for example: in zoology, the International Code of Zoological Nomenclature (ICZN); plants, the International Code of Nomenclature for algae, fungi, and plants (ICN); viruses, the International Committee on Taxonomy of Viruses (ICTV). The species description often contains photographs or other illustrations of type material along with a note on where they are deposited. The publication in which the species is described gives the new species a formal scientific name. Some 1.9 million species have been identified and described, out of some 8.7 million that may actually exist. Millions more have become extinct throughout the existence of life on Earth.
Scientific nomenclature
A name of a new species becomes valid (available in zoological terminology) with the date of publication of its formal scientific description. Once the scientist has performed the necessary research to determine that the discovered organism represents a new species, the scientific results are summarized in a scientific manuscript, either as part of a book or as a paper to be submitted to a scientific journal.
A scientific species description must fulfill several formal criteria specified by the nomenclature codes, e.g. selection of at least one type specimen. These criteria are intended to ensure that the species name is clear and unambiguous, for example, the International Code of Zoological Nomenclature states that "Authors should exercise reasonable care and consideration in forming new names to ensure that they are chosen with their subsequent users in mind and that, as far as possible, they are appropriate, compact, euphonious, memorable, and do not cause offence.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (9)
Related lectures (34)
Covers estimation of unknown parameters, analyzing model fit, bird prey response, and model diagnostics.
Covers coordination numbers, common ligands, and preferred geometries in coordination chemistry, emphasizing the spatial distribution between ligands and the role of d⁸ electron configurations.
Explores Poisson GLM for analyzing count data in categorical analysis, focusing on contingency tables and Bayesian inference.
In biology, a type is a particular specimen (or in some cases a group of specimens) of an organism to which the scientific name of that organism is formally associated. In other words, a type is an example that serves to anchor or centralizes the defining features of that particular taxon. In older usage (pre-1900 in botany), a type was a taxon rather than a specimen.
Nomenclature codes or codes of nomenclature are the various rulebooks that govern biological taxonomic nomenclature, each in their own broad field of organisms. To an end-user who only deals with names of species, with some awareness that species are assignable to families, it may not be noticeable that there is more than one code, but beyond this basic level these are rather different in the way they work. The successful introduction of two-part names for species by Linnaeus was the start for an ever-expanding system of nomenclature.
In biology, a species (: species) is often defined as the largest group of organisms in which any two individuals of the appropriate sexes or mating types can produce fertile offspring, typically by sexual reproduction. It is the basic unit of classification and a taxonomic rank of an organism, as well as a unit of biodiversity. Other ways of defining species include their karyotype, DNA sequence, morphology, behaviour, or ecological niche. In addition, paleontologists use the concept of the chronospecies since fossil reproduction cannot be examined.
This course applies concepts from chemical kinetics and mass and energy balances to address chemical reaction engineering problems, with a focus on industrial applications. Students develop the abilit
Introduction to Chemical Engineering is an introductory course that provides a basic overview of the chemical engineering field. It addresses the formulation and solution of material and energy balanc
The Habitat Suitability Index (HSI) is a quantitative index that determines the capacity of a given area to meet habitat requirements for a specific species with respect to given variables. The degree of universality of this index is not well understood ye ...
2024
In total, 28 of the 29 fish species reported from the Lake Kivu basin occur in the littoral zone of the lake, but information about their structure, occurrence, and the habitats affecting their distribution is largely lacking. The lake's inshore area is po ...
MDPI2023
, ,
In this letter we consider mean field type control problems with multiple species that have different dynamics. We formulate the discretized problem using a new type of entropy-regularized multimarginal optimal transport problems where the cost is a decomp ...