Concept

Injective cogenerator

In , a branch of mathematics, the concept of an injective cogenerator is drawn from examples such as Pontryagin duality. Generators are objects which cover other objects as an approximation, and (dually) cogenerators are objects which envelope other objects as an approximation. More precisely: A generator of a with a zero object is an object G such that for every nonzero object H there exists a nonzero morphism f:G → H. A cogenerator is an object C such that for every nonzero object H there exists a nonzero morphism f:H → C. (Note the reversed order). Assuming one has a category like that of abelian groups, one can in fact form direct sums of copies of G until the morphism f: Sum(G) →H is surjective; and one can form direct products of C until the morphism f:H→ Prod(C) is injective. For example, the integers are a generator of the category of abelian groups (since every abelian group is a quotient of a free abelian group). This is the origin of the term generator. The approximation here is normally described as generators and relations. As an example of a cogenerator in the same category, we have Q/Z, the rationals modulo the integers, which is a divisible abelian group. Given any abelian group A, there is an isomorphic copy of A contained inside the product of |A| copies of Q/Z. This approximation is close to what is called the divisible envelope - the true envelope is subject to a minimality condition. Finding a generator of an allows one to express every object as a quotient of a direct sum of copies of the generator. Finding a cogenerator allows one to express every object as a subobject of a direct product of copies of the cogenerator. One is often interested in projective generators (even finitely generated projective generators, called progenerators) and minimal injective cogenerators. Both examples above have these extra properties. The cogenerator Q/Z is useful in the study of modules over general rings. If H is a left module over the ring R, one forms the (algebraic) character module H* consisting of all abelian group homomorphisms from H to Q/Z.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.