Rational pointIn number theory and algebraic geometry, a rational point of an algebraic variety is a point whose coordinates belong to a given field. If the field is not mentioned, the field of rational numbers is generally understood. If the field is the field of real numbers, a rational point is more commonly called a real point. Understanding rational points is a central goal of number theory and Diophantine geometry. For example, Fermat's Last Theorem may be restated as: for n > 2, the Fermat curve of equation has no other rational points than (1, 0), (0, 1), and, if n is even, (–1, 0) and (0, –1).
Weil cohomology theoryIn algebraic geometry, a Weil cohomology or Weil cohomology theory is a cohomology satisfying certain axioms concerning the interplay of algebraic cycles and cohomology groups. The name is in honor of André Weil. Any Weil cohomology theory factors uniquely through the of Chow motives, but the category of Chow motives itself is not a Weil cohomology theory, since it is not an . Fix a base field k of arbitrary characteristic and a "coefficient field" K of characteristic zero.
Motive (algebraic geometry)In algebraic geometry, motives (or sometimes motifs, following French usage) is a theory proposed by Alexander Grothendieck in the 1960s to unify the vast array of similarly behaved cohomology theories such as singular cohomology, de Rham cohomology, etale cohomology, and crystalline cohomology. Philosophically, a "motif" is the "cohomology essence" of a variety.
Crystalline cohomologyIn mathematics, crystalline cohomology is a Weil cohomology theory for schemes X over a base field k. Its values Hn(X/W) are modules over the ring W of Witt vectors over k. It was introduced by and developed by . Crystalline cohomology is partly inspired by the p-adic proof in of part of the Weil conjectures and is closely related to the algebraic version of de Rham cohomology that was introduced by Grothendieck (1963).
Gaussian periodIn mathematics, in the area of number theory, a Gaussian period is a certain kind of sum of roots of unity. The periods permit explicit calculations in cyclotomic fields connected with Galois theory and with harmonic analysis (discrete Fourier transform). They are basic in the classical theory called cyclotomy. Closely related is the Gauss sum, a type of exponential sum which is a linear combination of periods. As the name suggests, the periods were introduced by Gauss and were the basis for his theory of compass and straightedge construction.
Galois moduleIn mathematics, a Galois module is a G-module, with G being the Galois group of some extension of fields. The term Galois representation is frequently used when the G-module is a vector space over a field or a free module over a ring in representation theory, but can also be used as a synonym for G-module. The study of Galois modules for extensions of local or global fields and their group cohomology is an important tool in number theory. Given a field K, the multiplicative group (Ks)× of a separable closure of K is a Galois module for the absolute Galois group.