An acoustic metamaterial, sonic crystal, or phononic crystal is a material designed to control, direct, and manipulate sound waves or phonons in gases, liquids, and solids (crystal lattices). Sound wave control is accomplished through manipulating parameters such as the bulk modulus β, density ρ, and chirality. They can be engineered to either transmit, or trap and amplify sound waves at certain frequencies. In the latter case, the material is an acoustic resonator. Acoustic metamaterials are used to model and research extremely large-scale acoustic phenomena like seismic waves and earthquakes, but also extremely small-scale phenomena like atoms. The latter is possible due to band gap engineering: acoustic metamaterials can be designed such that they exhibit band gaps for phonons, similar to the existence of band gaps for electrons in solids or electron orbitals in atoms. That has also made the phononic crystal an increasingly widely researched component in quantum technologies and experiments that probe quantum mechanics. Important branches of physics and technology that rely heavily on acoustic metamaterials are negative refractive index material research, and (quantum) optomechanics.
History of metamaterials
Acoustic metamaterials have developed from the research and findings in metamaterials. A novel material was originally proposed by Victor Veselago in 1967, but not realized until some 33 years later. John Pendry produced the basic elements of metamaterials in the late 1990s. His materials were combined, with negative index materials first realized in 2000, broadening the possible optical and material responses. Research in acoustic metamaterials has the same goal of broader material responses with sound waves.
Research employing acoustic metamaterials began in 2000 with the fabrication and demonstration of sonic crystals in a liquid. This was followed by transposing the behavior of the split-ring resonator to research in acoustic metamaterials.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A photonic metamaterial (PM), also known as an optical metamaterial, is a type of electromagnetic metamaterial, that interacts with light, covering terahertz (THz), infrared (IR) or visible wavelengths. The materials employ a periodic, cellular structure. The subwavelength periodicity distinguishes photonic metamaterials from photonic band gap or photonic crystal structures. The cells are on a scale that is magnitudes larger than the atom, yet much smaller than the radiated wavelength, are on the order of nanometers.
Metamaterial cloaking is the usage of metamaterials in an invisibility cloak. This is accomplished by manipulating the paths traversed by light through a novel optical material. Metamaterials direct and control the propagation and transmission of specified parts of the light spectrum and demonstrate the potential to render an object seemingly invisible. Metamaterial cloaking, based on transformation optics, describes the process of shielding something from view by controlling electromagnetic radiation.
Metamaterial antennas are a class of antennas which use metamaterials to increase performance of miniaturized (electrically small) antenna systems. Their purpose, as with any electromagnetic antenna, is to launch energy into free space. However, this class of antenna incorporates metamaterials, which are materials engineered with novel, often microscopic, structures to produce unusual physical properties. Antenna designs incorporating metamaterials can step-up the antenna's radiated power.
In this advanced electromagnetics course, you will develop a solid theoretical understanding of wave-matter interactions in natural materials and artificially structured photonic media and devices.
This course gives an introduction to transducers by both considering fundamental principles and their application in classical and quantum systems. The course builds up on the fundamental concept of c
Mitigating the energy requirements of artificial intelligence requires novel physical substrates for computation. Phononic metamaterials have vanishingly low power dissipation and hence are a prime candidate for green, always-on computers. However, their u ...
In this thesis work, we propose to exploit an innovative micro/nano-fabrication process, based on controlled fluid instabilities of a thin viscous film of chalcogenide glass. Amorphous selenium and arsenic triselenide were used in this thesis work, and com ...
This paper presents a solution to overcome the inherently limited bandwidth of substrate-integrated waveguide (SIW) slot antennas. It is analytically shown that by decreasing the permittivity of a dielectric loaded slot antenna, the resulting bandwidth inc ...