In crystal optics, the index ellipsoid (also known as the optical indicatrix or sometimes as the dielectric ellipsoid) is a geometric construction which concisely represents the refractive indices and associated polarizations of light, as functions of the orientation of the wavefront, in a doubly-refractive crystal (provided that the crystal does not exhibit optical rotation). When this ellipsoid is cut through its center by a plane parallel to the wavefront, the resulting intersection (called a central section or diametral section) is an ellipse whose major and minor semiaxes have lengths equal to the two refractive indices for that orientation of the wavefront, and have the directions of the respective polarizations as expressed by the electric displacement vector D. The principal semiaxes of the index ellipsoid are called the principal refractive indices.
It follows from the sectioning procedure that each principal semiaxis of the ellipsoid is generally not the refractive index for propagation in the direction of that semiaxis, but rather the refractive index for wavefronts tangential to that direction, with the D vector parallel to that direction, propagating perpendicular to that direction. Thus the direction of propagation (normal to the wavefront) to which each principal refractive index applies is in the plane perpendicular to the associated principal semiaxis.
The index ellipsoid is not to be confused with the index surface, whose radius vector (from the origin) in any direction is indeed the refractive index for propagation in that direction; for a birefringent medium, the index surface is the two-sheeted surface whose two radius vectors in any direction have lengths equal to the major and minor semiaxes of the diametral section of the index ellipsoid by a plane normal to that direction.
If we let denote the principal semiaxes of the index ellipsoid, and choose a Cartesian coordinate system in which these semiaxes are respectively in the , , and directions, the equation of the index ellipsoid is
If the index ellipsoid is triaxial (meaning that its principal semiaxes are all unequal), there are two cutting planes for which the diametral section reduces to a circle.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Birefringence is the optical property of a material having a refractive index that depends on the polarization and propagation direction of light. These optically anisotropic materials are said to be birefringent (or birefractive). The birefringence is often quantified as the maximum difference between refractive indices exhibited by the material. Crystals with non-cubic crystal structures are often birefringent, as are plastics under mechanical stress.
A waveplate or retarder is an optical device that alters the polarization state of a light wave travelling through it. Two common types of waveplates are the half-wave plate, which shifts the polarization direction of linearly polarized light, and the quarter-wave plate, which converts linearly polarized light into circularly polarized light and vice versa. A quarter-wave plate can be used to produce elliptical polarization as well.
Polarization (also polarisation) is a property of transverse waves which specifies the geometrical orientation of the oscillations. In a transverse wave, the direction of the oscillation is perpendicular to the direction of motion of the wave. A simple example of a polarized transverse wave is vibrations traveling along a taut string (see image); for example, in a musical instrument like a guitar string. Depending on how the string is plucked, the vibrations can be in a vertical direction, horizontal direction, or at any angle perpendicular to the string.
This course provides the fundamental knowledge and theoretical tools needed to treat nonlinear optical interactions, covering both classical and quantum theory of nonlinear optics. It presents applica
Explores dispersion in anisotropic media, covering k surface, uniaxial crystals, double refraction, beam walk-off, and applications of birefringent crystals.
The topic of this thesis is the development of new algorithmic reconstruction methods for quantitative phase imaging (QPI). In the past decade, advanced QPI has emerged as a valuable tool to study label-free biological samples and uncover their 3D structur ...
Nature is abundant in material platforms with anisotropic permittivities arising from symmetry reduction that feature a variety of extraordinary optical effects. Principal optical axes are essential characteristics for these effects that define light-matte ...
With the advance of on-chip nanophotonics, there is a high demand for high-refractive-index and low-loss materials. Currently, this technology is dominated by silicon, but van der Waals (vdW) materials with a high refractive index can offer a very advanced ...