Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Accurately estimating 3D human pose (3D HPE) and joint locations using only 2D keypoints is challenging. The noise in the predictions produced by conventional 2D human pose estimators often impeded the accuracy. In this paper, we present a diffusion-based ...
Los Alamitos2023
,
We present 3DHumanGAN, a 3D-aware generative adversarial network that synthesizes photo-like images of fullbody humans with consistent appearances under different view-angles and body-poses. To tackle the representational and computational challenges in sy ...
Ieee Computer Soc2023
Detecting people from 2D images and analyzing their motion in 3D have been long standing computer vision problems central to numerous applications such as autonomous driving and athletic training. Recently, with the availability of large amounts of trainin ...
EPFL2022
, , , ,
We present a method that can recognize new objects and estimate their 3D pose in RGB images even under partial occlusions. Our method requires neither a training phase on these objects nor real images depicting them, only their CAD models. It relies on a s ...
IEEE COMPUTER SOC2022
Purpose To develop a 3D MR technique to simultaneously acquire proton multiparametric maps (T-1, T-2, and proton density) and sodium density weighted images over the whole brain. Methods We implemented a 3D stack-of-stars MR pulse sequence which consists o ...
WILEY2021
,
Human visual system relies on both monocular focusness cues and binocular stereo cues to gain effective 3D perception. Correspondingly, depth from focus/defocus (DfF/DfD) and stereo matching are two most studied passive depth sensing schemes, which are tra ...
Here we provide the synthetic spindle datasets of our article "Task-driven neural network models predict neural dynamics of proprioception". It contains the synthetic generated training dataset of simulated muscle spindles during arm passive movements gene ...
Non-Rigid Structure-from-Motion (NRSfM) reconstructs a deformable 3D object from keypoint correspondences established between monocular 2D images. Current NRSfM methods lack statistical robustness, which is the ability to cope with correspondence errors. T ...
3D single object tracking (SOT) is an indispensable part of automated driving. Existing approaches rely heavily on large, densely labeled datasets. However, annotating point clouds is both costly and time-consuming. Inspired by the great success of cycle t ...
There are many approaches to weakly-supervised training of networks to segment 2D images. By contrast, existing approaches to segmenting volumetric images rely on full-supervision of a subset of 2D slices of the 3D volume. We propose an approach to volume ...