In mathematics, pointless topology, also called point-free topology (or pointfree topology) and locale theory, is an approach to topology that avoids mentioning points, and in which the lattices of open sets are the primitive notions. In this approach it becomes possible to construct topologically interesting spaces from purely algebraic data.
The first approaches to topology were geometrical, where one started from Euclidean space and patched things together. But Marshall Stone's work on Stone duality in the 1930s showed that topology can be viewed from an algebraic point of view (lattice-theoretic). Apart from Stone, Henry Wallman was the first person to exploit this idea. Others continued this path till Charles Ehresmann and his student Jean Bénabou (and simultaneously others), made the next fundamental step in the late fifties. Their insights arose from the study of "topological" and "differentiable" .
Ehresmann's approach involved using a category whose objects were complete lattices which satisfied a distributive law and whose morphisms were maps which preserved finite meets and arbitrary joins. He called such lattices "local lattices"; today they are called "frames" to avoid ambiguity with other notions in lattice theory.
The theory of frames and locales in the contemporary sense was developed through the following decades (John Isbell, Peter Johnstone, Harold Simmons, Bernhard Banaschewski, Aleš Pultr, Till Plewe, Japie Vermeulen, Steve Vickers) into a lively branch of topology, with application in various fields, in particular also in theoretical computer science. For more on the history of locale theory see Johnstone's overview.
Traditionally, a topological space consists of a set of points together with a topology, a system of subsets called open sets that with the operations of union (as join) and intersection (as meet) forms a lattice with certain properties. Specifically, the union of any family of open sets is again an open set, and the intersection of finitely many open set is again open.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
On étudie des notions de topologie générale: unions et quotients d'espaces topologiques; on approfondit les notions de revêtements et de groupe fondamental,et d'attachements de cellules et on démontre
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
In mathematics, especially in order theory, a complete Heyting algebra is a Heyting algebra that is complete as a lattice. Complete Heyting algebras are the of three different ; the category CHey, the category Loc of locales, and its , the category Frm of frames. Although these three categories contain the same objects, they differ in their morphisms, and thus get distinct names. Only the morphisms of CHey are homomorphisms of complete Heyting algebras.
In mathematics, general topology (or point set topology) is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology, geometric topology, and algebraic topology. The fundamental concepts in point-set topology are continuity, compactness, and connectedness: Continuous functions, intuitively, take nearby points to nearby points.
A lattice is an abstract structure studied in the mathematical subdisciplines of order theory and abstract algebra. It consists of a partially ordered set in which every pair of elements has a unique supremum (also called a least upper bound or join) and a unique infimum (also called a greatest lower bound or meet). An example is given by the power set of a set, partially ordered by inclusion, for which the supremum is the union and the infimum is the intersection.
Traffic congestion is a significant issue in all urban areas with concentration of activities for various city topologies and distribution of population and land use around the world. Developing realistic models that are able to replicate congestion spread ...
Modular robotics link the reliability of a centralised system with the adaptivity of a decentralised system. It is difficult for a robot with a fixed shape to be able to perform many different types of tasks. As the task space grows, the number of function ...
EPFL2024
This study presents a general approach to the topology design of tensegrities with rigid bodies. To the best of the authors' knowledge, all existing topology design methods of tensegrities focus on tensegrities that only consist of members carrying axial f ...
PERGAMON-ELSEVIER SCIENCE LTD2020
Covers the topology of Riemann surfaces and the concept of triangulation using finitely many triangles.
Covers modern algebraic geometry, including algebraic sets, morphisms, and projective algebraic sets.
Covers the concept of group cohomology, focusing on chain complexes, cochain complexes, cup products, and group rings.