Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We introduce a family of reductions for removing proper and homogeneous pairs of cliques from a graph G. This family generalizes some routines presented in the literature, mostly in the context of claw-free graphs. These reductions can be embedded in a sim ...
We consider communication of two degraded mes- sage sets over graphs where a common source sends two prioritized messages (a common and a private message) to several receivers. All receivers require the common message and a subset of the receivers require ...
A drawing of a graph in the plane is called a thrackle if every pair of edges meets precisely once, either at a common vertex or at a proper crossing. Let t(n) denote the maximum number of edges that a thrackle of n vertices can have. According to a 40 yea ...
We consider the transductive learning problem when the labels belong to a continuous space. Through the use of spectral graph wavelets, we explore the benefits of multiresolution analysis on a graph constructed from the labeled and unlabeled data. The spec ...
As the world becomes more interdependent and computing grows more collaborative, there is a need for new abstractions and tools to help users work together. We recently introduced entangled queries – a mechanism for information exchange between database qu ...
Let r and w be a fixed positive numbers, w < r. In a bold drawing of a graph, every vertex is represented by a disk of radius r, and every edge by a narrow rectangle of width w. We solve a problem of van Kreveld [K09] by showing that every graph admits a b ...
This paper introduces the connection-graph-stability method and uses it to establish a new lower bound on the algebraic connectivity of graphs (the second smallest eigenvalue of the Laplacian matrix of the graph) that is sharper than the previously publish ...
The obstacle number of a graph G is the smallest number of polygonal obstacles in the plane with the property that the vertices of G can be represented by distinct points such that two of them see each other if and only if the corresponding vertices are jo ...
The obstacle number of a graph G is the smallest number of polygonal obstacles in the plane with the property that the vertices of G can be represented by distinct points such that two of them see each other if and only if the corresponding vertices are jo ...
Artificial neural networks, electronic circuits, and gene networks are some examples of systems that can be modeled as networks, that is, as collections of interconnected nodes. In this paper we introduce the concept of terminal graph (t-graph for short), w ...