Decider (Turing machine)In computability theory, a decider is a Turing machine that halts for every input. A decider is also called a total Turing machine as it represents a total function. Because it always halts, such a machine is able to decide whether a given string is a member of a formal language. The class of languages which can be decided by such machines is the set of recursive languages. Given an arbitrary Turing machine, determining whether it is a decider is an undecidable problem.
Gentzen's consistency proofGentzen's consistency proof is a result of proof theory in mathematical logic, published by Gerhard Gentzen in 1936. It shows that the Peano axioms of first-order arithmetic do not contain a contradiction (i.e. are "consistent"), as long as a certain other system used in the proof does not contain any contradictions either. This other system, today called "primitive recursive arithmetic with the additional principle of quantifier-free transfinite induction up to the ordinal ε0", is neither weaker nor stronger than the system of Peano axioms.
BlooP and FlooPand () (Bounded loop and Free loop) are simple programming languages designed by Douglas Hofstadter to illustrate a point in his book Gödel, Escher, Bach. BlooP is a non-Turing-complete programming language whose main control flow structure is a bounded loop (i.e. recursion is not permitted). All programs in the language must terminate, and this language can only express primitive recursive functions. FlooP is identical to BlooP except that it supports unbounded loops; it is a Turing-complete language and can express all computable functions.
HyperoperationIn mathematics, the hyperoperation sequence is an infinite sequence of arithmetic operations (called hyperoperations in this context) that starts with a unary operation (the successor function with n = 0). The sequence continues with the binary operations of addition (n = 1), multiplication (n = 2), and exponentiation (n = 3). After that, the sequence proceeds with further binary operations extending beyond exponentiation, using right-associativity.
Wilhelm AckermannWilhelm Friedrich Ackermann (ˈækərmən; ˈakɐˌman; 29 March 1896 – 24 December 1962) was a German mathematician and logician best known for his work in mathematical logic and the Ackermann function, an important example in the theory of computation. Ackermann was born in Herscheid, Germany, and was awarded a Ph.D. by the University of Göttingen in 1925 for his thesis Begründung des "tertium non datur" mittels der Hilbertschen Theorie der Widerspruchsfreiheit, which was a consistency proof of arithmetic apparently without Peano induction (although it did use e.
Fast-growing hierarchyIn computability theory, computational complexity theory and proof theory, a fast-growing hierarchy (also called an extended Grzegorczyk hierarchy, or a Schwichtenberg-Wainer hierarchy) is an ordinal-indexed family of rapidly increasing functions fα: N → N (where N is the set of natural numbers {0, 1, ...}, and α ranges up to some large countable ordinal). A primary example is the Wainer hierarchy, or Löb–Wainer hierarchy, which is an extension to all α < ε0.
Random-access machineIn computer science, random-access machine (RAM) is an abstract machine in the general class of register machines. The RAM is very similar to the counter machine but with the added capability of 'indirect addressing' of its registers. Like the counter machine, The RAM has its instructions in the finite-state portion of the machine (the so-called Harvard architecture). The RAM's equivalent of the universal Turing machine with its program in the registers as well as its data is called the random-access stored-program machine or RASP.
Loop variantIn computer science, a loop variant is a mathematical function defined on the state space of a computer program whose value is monotonically decreased with respect to a (strict) well-founded relation by the iteration of a while loop under some invariant conditions, thereby ensuring its termination. A loop variant whose range is restricted to the non-negative integers is also known as a bound function, because in this case it provides a trivial upper bound on the number of iterations of a loop before it terminates.