Concept

BlooP and FlooP

and () (Bounded loop and Free loop) are simple programming languages designed by Douglas Hofstadter to illustrate a point in his book Gödel, Escher, Bach. BlooP is a non-Turing-complete programming language whose main control flow structure is a bounded loop (i.e. recursion is not permitted). All programs in the language must terminate, and this language can only express primitive recursive functions. FlooP is identical to BlooP except that it supports unbounded loops; it is a Turing-complete language and can express all computable functions. For example, it can express the Ackermann function, which (not being primitive recursive) cannot be written in BlooP. Borrowing from standard terminology in mathematical logic, Hofstadter calls FlooP's unbounded loops MU-loops. Like all Turing-complete programming languages, FlooP suffers from the halting problem: programs might not terminate, and it is not possible, in general, to decide which programs do. BlooP and FlooP can be regarded as models of computation, and have sometimes been used in teaching computability. The only variables are OUTPUT (the return value of the procedure) and CELL(i) (an unbounded sequence of natural-number variables, indexed by constants, as in the Unlimited Register Machine). The only operators are ⇐ (assignment), + (addition), × (multiplication), < (less-than), > (greater-than) and = (equals). Each program uses only a finite number of cells, but the numbers in the cells can be arbitrarily large. Data structures such as lists or stacks can be handled by interpreting the number in a cell in specific ways, that is, by Gödel numbering the possible structures. Control flow constructs include bounded loops, conditional statements, ABORT jumps out of loops, and QUIT jumps out of blocks. BlooP does not permit recursion, unrestricted jumps, or anything else that would have the same effect as the unbounded loops of FlooP. Named procedures can be defined, but these can call only previously defined procedures.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.