Image restoration is the operation of taking a corrupt/noisy image and estimating the clean, original image. Corruption may come in many forms such as motion blur, and camera mis-focus. Image restoration is performed by reversing the process that blurred the image and such is performed by imaging a point source and use the point source image, which is called the Point Spread Function (PSF) to restore the image information lost to the blurring process. Image restoration is different from in that the latter is designed to emphasize features of the image that make the image more pleasing to the observer, but not necessarily to produce realistic data from a scientific point of view. Image enhancement techniques (like contrast stretching or de-blurring by a nearest neighbor procedure) provided by imaging packages use no a priori model of the process that created the image. With image enhancement noise can effectively be removed by sacrificing some resolution, but this is not acceptable in many applications. In a fluorescence microscope, resolution in the z-direction is bad as it is. More advanced image processing techniques must be applied to recover the object. The objective of image restoration techniques is to reduce noise and recover resolution loss. Image processing techniques are performed either in the image domain or the frequency domain. The most straightforward and a conventional technique for image restoration is deconvolution, which is performed in the frequency domain and after computing the Fourier transform of both the image and the PSF and undo the resolution loss caused by the blurring factors. Nowadays, photo restoration is done using digital tools and software to fix any type of damage images may have and improve the general quality and definition of the details.

  1. Geometric correction
  2. Radiometric correction
  3. Denoising Image restoration techniques aim to reverse the effects of degradation and restore the image as closely as possible to its original or desired state.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (5)
COM-300: Stochastic models in communication
L'objectif de ce cours est la maitrise des outils des processus stochastiques utiles pour un ingénieur travaillant dans les domaines des systèmes de communication, de la science des données et de l'i
EE-451: Image analysis and pattern recognition
This course gives an introduction to the main methods of image analysis and pattern recognition.
BIO-410: Bioimage informatics
The course provides a comprehensive overview of methods, algorithms, and computer tools used in bioimage analysis. It exposes fundamental concepts and practical computer solutions to extract quantitat
Show more
Related lectures (32)
Image Denoising: Formulation and Key Concepts
Covers the process of image denoising and introduces key concepts for the first black hole image.
Unsupervised Domain Mapping: Geometry-Consistent GAN
Explores unsupervised domain mapping using a novel geometry-consistent GAN approach.
Image Processing: Display and EnhancementMOOC: Image Processing and Analysis for Life Scientists
Covers image histograms, saturation artifacts, and brightness/contrast adjustments in digital images.
Show more
Related publications (99)

A KL Divergence-Based Loss for In Vivo Ultrafast Ultrasound Image Enhancement with Deep Learning

Jean-Philippe Thiran

Ultrafast ultrasound imaging, characterized by high frame rates, generates low-quality images. Convolutional neural networks (CNNs) have demonstrated great potential to enhance image quality without compromising the frame rate. However, CNNs have been most ...
2023

Cross-resolution Face Recognition via Identity-Preserving Network and Knowledge Distillation

Touradj Ebrahimi, Yuhang Lu

Cross-resolution face recognition has become a challenging problem for modern deep face recognition systems. It aims at matching a low-resolution probe image with high-resolution gallery images registered in a database. Existing methods mainly leverage pri ...
2023

Towards learning-based denoising of light fields

Touradj Ebrahimi, Michela Testolina, Tomás Soares De Carvalho Feith

In recent years, new emerging immersive imaging modalities, e.g. light fields, have been receiving growing attention, becoming increasingly widespread over the years. Light fields are often captured through multi-camera arrays or plenoptic cameras, with th ...
2023
Show more
Related concepts (2)
Deep learning
Deep learning is part of a broader family of machine learning methods, which is based on artificial neural networks with representation learning. The adjective "deep" in deep learning refers to the use of multiple layers in the network. Methods used can be either supervised, semi-supervised or unsupervised.
Digital image processing
Digital image processing is the use of a digital computer to process s through an algorithm. As a subcategory or field of digital signal processing, digital image processing has many advantages over . It allows a much wider range of algorithms to be applied to the input data and can avoid problems such as the build-up of noise and distortion during processing. Since images are defined over two dimensions (perhaps more) digital image processing may be modeled in the form of multidimensional systems.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.