Natural topologyIn any domain of mathematics, a space has a natural topology if there is a topology on the space which is "best adapted" to its study within the domain in question. In many cases this imprecise definition means little more than the assertion that the topology in question arises naturally or canonically (see mathematical jargon) in the given context. Note that in some cases multiple topologies seem "natural". For example, if Y is a subset of a totally ordered set X, then the induced order topology, i.e.
Euclidean topologyIn mathematics, and especially general topology, the Euclidean topology is the natural topology induced on -dimensional Euclidean space by the Euclidean metric. The Euclidean norm on is the non-negative function defined by Like all norms, it induces a canonical metric defined by The metric induced by the Euclidean norm is called the Euclidean metric or the Euclidean distance and the distance between points and is In any metric space, the open balls form a base for a topology on that space.
Cylinder setIn mathematics, the cylinder sets form a basis of the product topology on a product of sets; they are also a generating family of the cylinder σ-algebra. Given a collection of sets, consider the Cartesian product of all sets in the collection. The canonical projection corresponding to some is the function that maps every element of the product to its component. A cylinder set is a of a canonical projection or finite intersection of such preimages. Explicitly, it is a set of the form, for any choice of , finite sequence of sets and subsets for .
Sequentially compact spaceIn mathematics, a topological space X is sequentially compact if every sequence of points in X has a convergent subsequence converging to a point in . Every metric space is naturally a topological space, and for metric spaces, the notions of compactness and sequential compactness are equivalent (if one assumes countable choice). However, there exist sequentially compact topological spaces that are not compact, and compact topological spaces that are not sequentially compact.
Hilbert cubeIn mathematics, the Hilbert cube, named after David Hilbert, is a topological space that provides an instructive example of some ideas in topology. Furthermore, many interesting topological spaces can be embedded in the Hilbert cube; that is, can be viewed as subspaces of the Hilbert cube (see below).