In mathematics, a quartic equation is one which can be expressed as a quartic function equaling zero. The general form of a quartic equation is
where a ≠ 0.
The quartic is the highest order polynomial equation that can be solved by radicals in the general case (i.e., one in which the coefficients can take any value).
Lodovico Ferrari is attributed with the discovery of the solution to the quartic in 1540, but since this solution, like all algebraic solutions of the quartic, requires the solution of a cubic to be found, it could not be published immediately. The solution of the quartic was published together with that of the cubic by Ferrari's mentor Gerolamo Cardano in the book Ars Magna (1545).
The proof that this was the highest order general polynomial for which such solutions could be found was first given in the Abel–Ruffini theorem in 1824, proving that all attempts at solving the higher order polynomials would be futile. The notes left by Évariste Galois before his death in a duel in 1832 later led to an elegant complete theory of the roots of polynomials, of which this theorem was one result.
Consider a quartic equation expressed in the form :
There exists a general formula for finding the roots to quartic equations, provided the coefficient of the leading term is non-zero. However, since the general method is quite complex and susceptible to errors in execution, it is better to apply one of the special cases listed below if possible.
If the constant term a4 = 0, then one of the roots is x = 0, and the other roots can be found by dividing by x, and solving the resulting cubic equation,
Call our quartic polynomial Q(x). Since 1 raised to any power is 1,
Thus if and so x = 1 is a root of Q(x). It can similarly be shown that if x = −1 is a root.
In either case the full quartic can then be divided by the factor or respectively yielding a new cubic polynomial, which can be solved to find the quartic's other roots.
If and then is a root of the equation.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Continuum conservation laws (e.g. mass, momentum and energy) will be introduced. Mathematical tools, including basic algebra and calculus of vectors and Cartesian tensors will be taught. Stress and de
Ce cours présente les fondements du droit foncier et les apports des principaux instruments de gestion foncière pour la mise en œuvre du développement territorial.
Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
In mathematics, an algebraic equation or polynomial equation is an equation of the form where P is a polynomial with coefficients in some field, often the field of the rational numbers. For many authors, the term algebraic equation refers only to univariate equations, that is polynomial equations that involve only one variable. On the other hand, a polynomial equation may involve several variables. In the case of several variables (the multivariate case), the term polynomial equation is usually preferred to algebraic equation.
In mathematics, a quintic function is a function of the form where a, b, c, d, e and f are members of a field, typically the rational numbers, the real numbers or the complex numbers, and a is nonzero. In other words, a quintic function is defined by a polynomial of degree five. Because they have an odd degree, normal quintic functions appear similar to normal cubic functions when graphed, except they may possess one additional local maximum and one additional local minimum. The derivative of a quintic function is a quartic function.
In algebra, a quartic function is a function of the form where a is nonzero, which is defined by a polynomial of degree four, called a quartic polynomial. A quartic equation, or equation of the fourth degree, is an equation that equates a quartic polynomial to zero, of the form where a ≠ 0. The derivative of a quartic function is a cubic function.
Explores dominant balance analysis in solving the quintic polynomial, revealing insights into root behavior and the importance of symbolic expressions.
In materials, certain approximated symmetry operations can exist in a lower-order approximation of the effective model but are good enough to influence the physical responses of the system, and these approximated symmetries were recently dubbed "quasisymme ...
FePS 3 is a van der Waals compound with a honeycomb lattice that is a good example of a two-dimensional antiferromagnet with Ising-like anisotropy. Neutron spectroscopy data from FePS 3 were previously analyzed using a straightforward Heisenberg Hamiltonia ...
In this thesis, we investigate methods for the practical and accurate localization of Internet performance problems. The methods we propose belong to the field of network loss tomography, that is, they infer the loss characteristics of links from end-to-en ...