Stationary distribution may refer to: A special distribution for a Markov chain such that if the chain starts with its stationary distribution, the marginal distribution of all states at any time will always be the stationary distribution. Assuming irreducibility, the stationary distribution is always unique if it exists, and its existence can be implied by positive recurrence of all states. The stationary distribution has the interpretation of the limiting distribution when the chain is irreducible and aperiodic. The marginal distribution of a stationary process or stationary time series The set of joint probability distributions of a stationary process or stationary time series In some fields of application, the term stable distribution is used for the equivalent of a stationary (marginal) distribution, although in probability and statistics the term has a rather different meaning: see stable distribution. Crudely stated, all of the above are specific cases of a common general concept. A stationary distribution is a specific entity which is unchanged by the effect of some matrix or operator: it need not be unique. Thus stationary distributions are related to eigenvectors for which the eigenvalue is unity.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.