Summary
A paleothermometer is a methodology that provides an estimate of the ambient temperature at the time of formation of a natural material. Most paleothermometers are based on empirically-calibrated proxy relationships, such as the tree ring or TEX86 methods. Isotope methods, such as the δ18O method or the clumped-isotope method, are able to provide, at least in theory, direct measurements of temperature. The isotopic ratio of 18O to 16O, usually in foram tests or ice cores. High values mean low temperatures. Confounded by ice volume - more ice means higher values. Ocean water is mostly H216O, with small amounts of HD16O and H218O. In Standard Mean Ocean Water (SMOW) the ratio of D to H is 155.8e-6 and 18O/16O is 2005e-6. Fractionation occurs during changes between condensed and vapour phases: the vapour pressure of heavier isotopes is lower, so vapour contains relatively more of the lighter isotopes and when the vapour condenses the precipitation preferentially contains heavier isotopes. The difference from SMOW is expressed as and a similar formula for δD. values for precipitation are always negative. The major influence on is the difference between ocean temperatures where the moisture evaporated and the place where the final precipitation occurred; since ocean temperatures are relatively stable the value mostly reflects the temperature where precipitation occurs. Taking into account that the precipitation forms above the inversion layer, we are left with a linear relation: which is empirically calibrated from measurements of temperature and as a = 0.67‰degC for Greenland and 0.76 ‰degC for East Antarctica. The calibration was initially done on the basis of spatial variations in temperature and it was assumed that this corresponded to temporal variations (Jouzel and Merlivat, 1984). More recently, borehole thermometry has shown that for glacial-interglacial variations, a = 0.33 ‰degC (Cuffey et al., 1995), implying that glacial-interglacial temperature changes were twice as large as previously believed.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.