Projective Hilbert spaceIn mathematics and the foundations of quantum mechanics, the projective Hilbert space of a complex Hilbert space is the set of equivalence classes of non-zero vectors in , for the relation on given by if and only if for some non-zero complex number . The equivalence classes of for the relation are also called rays or projective rays. This is the usual construction of projectivization, applied to a complex Hilbert space. The physical significance of the projective Hilbert space is that in quantum theory, the wave functions and represent the same physical state, for any .
TransmonIn quantum computing, and more specifically in superconducting quantum computing, a transmon is a type of superconducting charge qubit that was designed to have reduced sensitivity to charge noise. The transmon was developed by Robert J. Schoelkopf, Michel Devoret, Steven M. Girvin, and their colleagues at Yale University in 2007. Its name is an abbreviation of the term transmission line shunted plasma oscillation qubit; one which consists of a Cooper-pair box "where the two superconductors are also capacitatively shunted in order to decrease the sensitivity to charge noise, while maintaining a sufficient anharmonicity for selective qubit control".
Fock stateIn quantum mechanics, a Fock state or number state is a quantum state that is an element of a Fock space with a well-defined number of particles (or quanta). These states are named after the Soviet physicist Vladimir Fock. Fock states play an important role in the second quantization formulation of quantum mechanics. The particle representation was first treated in detail by Paul Dirac for bosons and by Pascual Jordan and Eugene Wigner for fermions.
Quantum busA quantum bus is a device which can be used to store or transfer information between independent qubits in a quantum computer, or combine two qubits into a superposition. It is the quantum analog of a classical bus. There are several physical systems that can be used to realize a quantum bus, including trapped ions, photons, and superconducting qubits. Trapped ions, for example, can use the quantized motion of ions (phonons) as a quantum bus, while photons can act as a carrier of quantum information by utilizing the increased interaction strength provided by cavity quantum electrodynamics.
Quantum pseudo-telepathyQuantum pseudo-telepathy is the fact that in certain Bayesian games with asymmetric information, players who have access to a shared physical system in an entangled quantum state, and who are able to execute strategies that are contingent upon measurements performed on the entangled physical system, are able to achieve higher expected payoffs in equilibrium than can be achieved in any mixed-strategy Nash equilibrium of the same game by players without access to the entangled quantum system.
Holevo's theoremHolevo's theorem is an important limitative theorem in quantum computing, an interdisciplinary field of physics and computer science. It is sometimes called Holevo's bound, since it establishes an upper bound to the amount of information that can be known about a quantum state (accessible information). It was published by Alexander Holevo in 1973. As for several concepts in quantum information theory, accessible information is best understood in terms of a 2-party communication. So we introduce two parties, Alice and Bob.