Perceptual learning is learning better perception skills such as differentiating two musical tones from one another or categorizations of spatial and temporal patterns relevant to real-world expertise. Examples of this may include reading, seeing relations among chess pieces, and knowing whether or not an X-ray image shows a tumor.
Sensory modalities may include visual, auditory, tactile, olfactory, and taste. Perceptual learning forms important foundations of complex cognitive processes (i.e., language) and interacts with other kinds of learning to produce perceptual expertise. Underlying perceptual learning are changes in the neural circuitry. The ability for perceptual learning is retained throughout life.
It can be fairly easy to confuse category learning and perceptual learning. Category learning is "an assumed fixed, pre-established perceptual representation to describe the objects to be categorized." Category learning is built upon perceptual learning because you are showing a distinction of what the objects are. Perceptual learning is defined as a "change in perception as a product of experience, and has reviewed evidence demonstrating that discrimination between otherwiords that sound similar to their native language. They now can tell the difference whereas in category learning they are trying to separate the two.
Laboratory studies reported many examples of dramatic improvements in sensitivities from appropriately structured perceptual learning tasks. In visual Vernier acuity tasks, observers judge whether one line is displaced above or below a second line. Untrained observers are often already very good with this task, but after training, observers' threshold has been shown to improve as much as 6 fold. Similar improvements have been found for visual motion discrimination and orientation sensitivity.
In visual search tasks, observers are asked to find a target object hidden among distractors or in noise. Studies of perceptual learning with visual search show that experience leads to great gains in sensitivity and speed.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Motivated behaviors fulfil the basic physiological needs of animals and enable their safety. In this course, you will learn about the neuronal circuits that detect potential dangers in the environment
Neuroplasticity, also known as neural plasticity, or brain plasticity, is the ability of neural networks in the brain to change through growth and reorganization. It is when the brain is rewired to function in some way that differs from how it previously functioned. These changes range from individual neuron pathways making new connections, to systematic adjustments like cortical remapping. Examples of neuroplasticity include circuit and network changes that result from learning a new ability, information acquisition, environmental influences, practice, and psychological stress.
A sense is a biological system used by an organism for sensation, the process of gathering information about the world through the detection of stimuli. Although in some cultures five human senses were traditionally identified as such (namely sight, smell, touch, taste, and hearing), it is now recognized that there are many more. Senses used by non-human organisms are even greater in variety and number. During sensation, sense organs collect various stimuli (such as a sound or smell) for transduction, meaning transformation into a form that can be understood by the brain.
The visual system comprises the sensory organ (the eye) and parts of the central nervous system (the retina containing photoreceptor cells, the optic nerve, the optic tract and the visual cortex) which gives organisms the sense of sight (the ability to detect and process visible light) as well as enabling the formation of several non-image photo response functions. It detects and interprets information from the optical spectrum perceptible to that species to "build a representation" of the surrounding environment.
Attractive serial dependence occurs when perceptual decisions are attracted toward previous stimuli. This effect is mediated by spatial attention and is most likely to occur when similar stimuli are attended at nearby locations. Attention, however, also in ...
In the last few years, stroke ranked as the second most common cause of death and is the third most significant condition affecting disability-adjusted life years (DALYs) worldwide. Being the most prevalent and quality of life impacting post-stroke symptom ...
Recent work suggests that serial dependence, where perceptual decisions are biased toward previous stimuli, arises from the prior that sensory input is temporally correlated. However, existing studies have mostly used random stimulus sequences that do not ...