Summary
Butane (ˈbjuːteɪn) or n-butane is an alkane with the formula C4H10. Butane is a highly flammable, colorless, easily liquefied gas that quickly vaporizes at room temperature and pressure. The name butane comes from the root but- (from butyric acid, named after the Greek word for butter) and the suffix -ane. It was discovered in crude petroleum in 1864 by Edmund Ronalds, who was the first to describe its properties, and commercialized by Walter O. Snelling in early 1910s. Butane is one of a group of liquefied petroleum gases (LP gases). The others include propane, propylene, butadiene, butylene, isobutylene, and mixtures thereof. Butane burns more cleanly than both gasoline and coal. The first synthesis of butane was accidentally achieved by British chemist Edward Frankland in 1849 from ethyl iodide and zinc, but he had not realized that the ethyl radical dimerized and misidentified the substance. The proper discoverer of the butane called it "hydride of butyl", but already in the 1860s more names were used: "butyl hydride", "hydride of tetryl" and "tetryl hydride", "diethyl" or "ethyl ethylide" and others. August Wilhelm von Hofmann in his 1866 systemic nomenclature proposed the name "quartane", and the modern name was introduced to English from German around 1874. Butane did not have much practical use until the 1910s, when W. Snelling identified butane and propane as components in gasoline and found that, if they were cooled, they could be stored in a volume-reduced liquified state in pressurized containers. The density of butane is highly dependent on temperature and pressure in the reservoir. For example, the density of liquid propane is 571.8±1 kg/m3 (for pressures up to 2MPa and temperature 27±0.2 °C), while the density of liquid butane is 625.5±0.7 kg/m3 (for pressures up to 2MPa and temperature -13±0.2 °C). C4H10 Rotation about the central C−C bond produces two different conformations (trans and gauche) for n-butane. When oxygen is plentiful, butane burns to form carbon dioxide and water vapor; when oxygen is limited, carbon (soot) or carbon monoxide may also be formed.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood