Propositional formulaIn propositional logic, a propositional formula is a type of syntactic formula which is well formed and has a truth value. If the values of all variables in a propositional formula are given, it determines a unique truth value. A propositional formula may also be called a propositional expression, a sentence, or a sentential formula. A propositional formula is constructed from simple propositions, such as "five is greater than three" or propositional variables such as p and q, using connectives or logical operators such as NOT, AND, OR, or IMPLIES; for example: (p AND NOT q) IMPLIES (p OR q).
Quantifier eliminationQuantifier elimination is a concept of simplification used in mathematical logic, model theory, and theoretical computer science. Informally, a quantified statement " such that " can be viewed as a question "When is there an such that ?", and the statement without quantifiers can be viewed as the answer to that question. One way of classifying formulas is by the amount of quantification. Formulas with less depth of quantifier alternation are thought of as being simpler, with the quantifier-free formulas as the simplest.
Superposition calculusThe superposition calculus is a calculus for reasoning in equational logic. It was developed in the early 1990s and combines concepts from first-order resolution with ordering-based equality handling as developed in the context of (unfailing) Knuth–Bendix completion. It can be seen as a generalization of either resolution (to equational logic) or unfailing completion (to full clausal logic). Like most first-order calculi, superposition tries to show the unsatisfiability of a set of first-order clauses, i.e.
Term logicIn logic and formal semantics, term logic, also known as traditional logic, syllogistic logic or Aristotelian logic, is a loose name for an approach to formal logic that began with Aristotle and was developed further in ancient history mostly by his followers, the Peripatetics. It was revived after the third century CE by Porphyry's Isagoge. Term logic revived in medieval times, first in Islamic logic by Alpharabius in the tenth century, and later in Christian Europe in the twelfth century with the advent of new logic, remaining dominant until the advent of predicate logic in the late nineteenth century.
SatisfiabilityIn mathematical logic, a formula is satisfiable if it is true under some assignment of values to its variables. For example, the formula is satisfiable because it is true when and , while the formula is not satisfiable over the integers. The dual concept to satisfiability is validity; a formula is valid if every assignment of values to its variables makes the formula true. For example, is valid over the integers, but is not.
Prover9Prover9 is an automated theorem prover for first-order and equational logic developed by William McCune. Prover9 is the successor of the Otter theorem prover also developed by William McCune. Prover9 is noted for producing relatively readable proofs and having a powerful hints strategy. Prover9 is intentionally paired with Mace4, which searches for finite models and counterexamples. Both can be run simultaneously from the same input, with Prover9 attempting to find a proof, while Mace4 attempts to find a (disproving) counter-example.
Otter (theorem prover)Otter is an automated theorem prover developed by William McCune at Argonne National Laboratory in Illinois. Otter was the first widely distributed, high-performance theorem prover for first-order logic, and it pioneered a number of important implementation techniques. Otter is an acronym for Organized Techniques for Theorem-proving and Effective Research. Otter is based on resolution and paramodulation, constrained by term orderings similar to those in the superposition calculus.
Computer-assisted proofA computer-assisted proof is a mathematical proof that has been at least partially generated by computer. Most computer-aided proofs to date have been implementations of large proofs-by-exhaustion of a mathematical theorem. The idea is to use a computer program to perform lengthy computations, and to provide a proof that the result of these computations implies the given theorem. In 1976, the four color theorem was the first major theorem to be verified using a computer program.
Automated reasoningIn computer science, in particular in knowledge representation and reasoning and metalogic, the area of automated reasoning is dedicated to understanding different aspects of reasoning. The study of automated reasoning helps produce computer programs that allow computers to reason completely, or nearly completely, automatically. Although automated reasoning is considered a sub-field of artificial intelligence, it also has connections with theoretical computer science and philosophy.
Unification (computer science)In logic and computer science, unification is an algorithmic process of solving equations between symbolic expressions. For example, using x,y,z as variables, the singleton equation set { cons(x,cons(x,nil)) = cons(2,y) } is a syntactic first-order unification problem that has the substitution { x ↦ 2, y ↦ cons(2,nil) } as its only solution.