Dario FloreanoProf. Dario Floreano is director of the Laboratory of Intelligent Systems at the Swiss Federal Institute of Technology Lausanne (EPFL). Since 2010, he is the founding director of the Swiss National Center of Competence in Robotics, a research program that brings together more than 20 labs across Switzerland. Prof. Floreano holds an M.A. in Vision, an M.S. in Neural Computation, and a PhD in Robotics. He has held research positions at Sony Computer Science Laboratory, at Caltech/JPL, and at Harvard University. His main research interests are Robotics and A.I. at the convergence of biology and engineering. Prof. Floreano made pioneering contributions to the fields of evolutionary robotics, aerial robotics, and soft robotics. He served in numerous advisory boards and committees, including the Future and Emerging Technologies division of the European Commission, the World Economic Forum Agenda Council, the International Society of Artificial Life, the International Neural Network Society, and in the editorial committee of several scientific journals. In addition, he helped spinning off two drone companies (senseFly.com and Flyability.com) and a non-for-profit portal on robotics and A.I. (RoboHub.org). Books
Manuale sulle Reti Neurali, il Mulino (in Italian), 1996 (first edition), 2006 (second edition)Evolutionary Robotics, MIT Press, 2000
Bio-Inspired Artificial Intelligence, MIT Press, 2008
Flying Insects and Robots, Springer Verlag, 2010
Ali H. SayedAli H. Sayed is Dean of Engineering at EPFL, Switzerland, where he also leads the Adaptive Systems Laboratory. He has also served as Distinguished Professor and Chairman of Electrical Engineering at UCLA. He is recognized as a Highly Cited Researcher and is a member of the US National Academy of Engineering. He is also a member of the World Academy of Sciences and served as President of the IEEE Signal Processing Society during 2018 and 2019.
Dr. Sayed is an author/co-author of over 570 scholarly publications and six books. His research involves several areas
including adaptation and learning theories, data and network sciences, statistical inference, and multiagent systems.
His work has been recognized with several major awards including the 2022 IEEE Fourier Award, the 2020 Norbert Wiener Society Award and the 2015 Education Award from the IEEE Signal Processing Society, the 2014 Papoulis Award from the European Association for Signal Processing, the 2013 Meritorious Service Award and the 2012 Technical Achievement Award from the IEEE Signal Processing Society, the 2005 Terman Award from the American Society for Engineering Education, the 2005 Distinguished Lecturer from the IEEE Signal Processing Society, the 2003 Kuwait Prize, and the 1996 IEEE Donald G. Fink Prize. His publications have been awarded several Best Paper Awards from the IEEE (2002, 2005, 2012, 2014) and EURASIP (2015). He is a Fellow of IEEE, EURASIP, and the American Association for the Advancement of Science (AAAS); the publisher of the journal Science.
Mackenzie MathisCenter for NeuroprostheticsEPFL ELLIS Unit Faculty MemberCenter for Intelligent Systems
Alexander MathisAlexander studied pure mathematics with a minor in logic and theory of science at the Ludwig Maximilians University in Munich. For his PhD also at LMU, he worked on optimal coding approaches to elucidate the properties of grid cells. As a postdoctoral fellow with Prof. Venkatesh N. Murthy at Harvard University and Prof. Matthias Bethge at Tuebingen AI, he decided to study olfactory behaviors such as odor-guided navigation, social behaviors and the cocktail party problem in mice. During this time, he increasingly got interested sensorimotor behaviors beyond olfaction and started working on proprioception, motor adaption, as well as computer vision tools for measuring animal behavior.
In his group, he is interested in elucidating how the brain gives rise to adaptive behavior. One of the major goals is to synthesize large datasets into computationally useful information. For those purposes, he develops algorithms and systems to analyze animal behavior (e.g. DeepLabCut), neural data, as well as creates experimentally testable computational models.