A numeric sequence is said to be statistically random when it contains no recognizable patterns or regularities; sequences such as the results of an ideal dice roll or the digits of π exhibit statistical randomness.
Statistical randomness does not necessarily imply "true" randomness, i.e., objective unpredictability. Pseudorandomness is sufficient for many uses, such as statistics, hence the name statistical randomness.
Global randomness and local randomness are different. Most philosophical conceptions of randomness are global—because they are based on the idea that "in the long run" a sequence looks truly random, even if certain sub-sequences would not look random. In a "truly" random sequence of numbers of sufficient length, for example, it is probable there would be long sequences of nothing but repeating numbers, though on the whole the sequence might be random. Local randomness refers to the idea that there can be minimum sequence lengths in which random distributions are approximated. Long stretches of the same numbers, even those generated by "truly" random processes, would diminish the "local randomness" of a sample (it might only be locally random for sequences of 10,000 numbers; taking sequences of less than 1,000 might not appear random at all, for example).
A sequence exhibiting a pattern is not thereby proved not statistically random. According to principles of Ramsey theory, sufficiently large objects must necessarily contain a given substructure ("complete disorder is impossible").
Legislation concerning gambling imposes certain standards of statistical randomness to slot machines.
Randomness test
The first tests for random numbers were published by M.G. Kendall and Bernard Babington Smith in the Journal of the Royal Statistical Society in 1938. They were built on statistical tools such as Pearson's chi-squared test that were developed to distinguish whether experimental phenomena matched their theoretical probabilities. Pearson developed his test originally by showing that a number of dice experiments by W.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Random number generation is a process by which, often by means of a random number generator (RNG), a sequence of numbers or symbols that cannot be reasonably predicted better than by random chance is generated. This means that the particular outcome sequence will contain some patterns detectable in hindsight but unpredictable to foresight. True random number generators can be hardware random-number generators (HRNGs), wherein each generation is a function of the current value of a physical environment's attribute that is constantly changing in a manner that is practically impossible to model.
In mathematics, a low-discrepancy sequence is a sequence with the property that for all values of N, its subsequence x1, ..., xN has a low discrepancy. Roughly speaking, the discrepancy of a sequence is low if the proportion of points in the sequence falling into an arbitrary set B is close to proportional to the measure of B, as would happen on average (but not for particular samples) in the case of an equidistributed sequence. Specific definitions of discrepancy differ regarding the choice of B (hyperspheres, hypercubes, etc.
In common usage, randomness is the apparent or actual lack of definite pattern or predictability in information. A random sequence of events, symbols or steps often has no order and does not follow an intelligible pattern or combination. Individual random events are, by definition, unpredictable, but if the probability distribution is known, the frequency of different outcomes over repeated events (or "trials") is predictable. For example, when throwing two dice, the outcome of any particular roll is unpredictable, but a sum of 7 will tend to occur twice as often as 4.
Biology is becoming more and more a data science, as illustrated by the explosion of available genome sequences. This course aims to show how we can make sense of such data and harness it in order to
Building up on the basic concepts of sampling, filtering and Fourier transforms, we address stochastic modeling, spectral analysis, estimation and prediction, classification, and adaptive filtering, w
This course explains the mathematical and computational models that are used in the field of theoretical neuroscience to analyze the collective dynamics of thousands of interacting neurons.
This course explains the mathematical and computational models that are used in the field of theoretical neuroscience to analyze the collective dynamics of thousands of interacting neurons.
Model-based reinforcement learning for robot control offers the advantages of overcoming concerns on data collection and iterative processes for policy improvement in model-free methods. However, both methods use exploration strategy relying on heuristics ...
Harnessing quantum randomness for the generation of random numbers is an important concept crucial for information security and many other computer-related applications. Quantum random number generators (QRNGs) are evolving from bulky, slow, and expensive ...
True random number generators (TRNGs) allow the generation of true random bit sequences, guaranteeing the unpredictability and perfect balancing of the generated values. TRNGs can be realised from the sampling of quantum phenomena, for instance, the detect ...