Radon is a chemical element with the symbol Rn and atomic number 86. It is a radioactive, colourless, odourless, tasteless noble gas. It occurs naturally in minute quantities as an intermediate step in the normal radioactive decay chains through which thorium and uranium slowly decay into various short-lived radioactive elements and eventually into stable lead. Radon itself is the immediate decay product of radium. Its most stable isotope, 222Rn, has a half-life of only 3.8 days, making it one of the rarest elements. Since thorium and uranium are two of the most common radioactive elements on Earth, while also having three isotopes with half-lives on the order of several billion years, radon will be present on Earth long into the future despite its short half-life. The decay of radon produces many other short-lived nuclides, known as "radon daughters", ending at stable isotopes of lead.
Unlike all other intermediate elements in the aforementioned decay chains, radon is, under standard conditions, gaseous and easily inhaled, and therefore a health hazard. It is often the single largest contributor to an individual's background radiation dose, but due to local differences in geology, the level of exposure to radon gas differs from place to place. A common source is uranium-containing minerals in the ground, and therefore it accumulates in subterranean areas such as basements. Radon can also occur in some ground water like spring waters and hot springs. Climate change may cause radon previously trapped underground to be released as permafrost thaws, particularly in areas like the Arctic, Alaska, Canada, Greenland and Russia. It is possible to test for radon in buildings, and to use techniques such as sub-slab depressurization for mitigation.
Epidemiological studies have shown a clear link between breathing high concentrations of radon and incidence of lung cancer. Radon is a contaminant that affects indoor air quality worldwide.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Thorium is a weakly radioactive metallic chemical element with the symbol Th and atomic number 90. Thorium is light silver and tarnishes olive gray when it is exposed to air, forming thorium dioxide; it is moderately soft and malleable and has a high melting point. Thorium is an electropositive actinide whose chemistry is dominated by the +4 oxidation state; it is quite reactive and can ignite in air when finely divided. All known thorium isotopes are unstable. The most stable isotope, 232Th, has a half-life of 14.
Uranium is a chemical element with symbol U and atomic number 92. It is a silvery-grey metal in the actinide series of the periodic table. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Uranium radioactively decays by emitting an alpha particle. The half-life of this decay varies between 159,200 and 4.5 billion years for different isotopes, making them useful for dating the age of the Earth.
Radium is a chemical element with the symbol Ra and atomic number 88. It is the sixth element in group 2 of the periodic table, also known as the alkaline earth metals. Pure radium is silvery-white, but it readily reacts with nitrogen (rather than oxygen) upon exposure to air, forming a black surface layer of radium nitride (Ra3N2). All isotopes of radium are radioactive, the most stable isotope being radium-226 with a half-life of 1,600 years.
The course introduces the basic concepts of thermodynamics and heat transfer, and thermodynamic properties of matter and their calculation. The students will master the concepts of heat, mass, and mom
Introduction to materials structure including crystallography, the structure of amorphous materials such as glasses, polymers and biomaterials as well as the basics of characterization techniques.
The goal of the course is to introduce basic notions from public key cryptography (PKC) as well as basic number-theoretic methods and algorithms for cryptanalysis of protocols and schemes based on PKC
Radon is a naturally occurring radioactive gas that has the potential to accumulate in buildings and over time, causes lung cancer in humans. Present methods for radon measurements are disparate, which pose challenges to benchmark radon concentrations and ...
Radon is a noble, natural, and radioactive gas coming mainly from the ground which might accumulate indoors and lead each year to 200-300 deaths from lung cancer in Switzerland. A brand new and innovative living lab will be built as of 2023 in Fribourg (Sw ...
Radon is a natural and radioactively well-known carcinogenic indoor air pollutant. Since 2020, a radon short-term proactive methodology has been proposed by Swiss authorities, which aims to evaluate the probability of overpassing the national reference val ...