A render farm is a high-performance computer system, e.g. a computer cluster, built to render (CGI), typically for film and television visual effects.
The term render farm was born during the production of the Autodesk 3D Studio animated short The Bored Room in July 1990 when, to meet an unrealistic deadline, a room filled with Compaq 386 computers was configured to do the rendering. At the time the system wasn't networked so each computer had to be set up by hand to render a specific animation sequence. The rendered images would then be 'harvested' via a rolling platform to a large-format optical storage drive, then loaded frame by frame to a Sony CRV disc.
The Autodesk technician assigned to manage this early render farm (Jamie Clay) had a regular habit of wearing farmer's overalls and the product manager for the software (Bob Bennett) joked that what Clay was doing was farming the frames and at that moment he named the collection of computers a render farm. In the second release of the software, Autodesk introduced network rendering, making the task of running a render farm significantly easier. A BTS of The Bored Room doesn't show Clay in the overalls but does give a glimpse of the production environment.
A render farm is different from a render wall, which is a networked, tiled display used for real-time rendering. The rendering of images is a highly parallelizable activity, as frames and sometimes tiles can be calculated independently of the others, with the main communication between processors being the upload of the initial source material, such as models and textures, and the download of the finished images.
Over the decades, advances in computer capability have allowed an image to take less time to render. However, the increased computation is appropriated to meet demands to achieve state-of-the-art image quality. While simple images can be produced rapidly, more realistic and complicated higher-resolution images can now be produced in more reasonable amounts of time.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
1ère année: bases nécessaires à la représentation informatique 2D (3D).
Passage d'un à plusieurs logiciels: compétence de choisir les outils adéquats en 2D et en 3D.
Mise en relation des outils de CAO
3D computer graphics, sometimes called CGI, 3D-CGI or three-dimensional , are graphics that use a three-dimensional representation of geometric data (often Cartesian) that is stored in the computer for the purposes of performing calculations and rendering , usually s but sometimes s. The resulting images may be stored for viewing later (possibly as an animation) or displayed in real time. 3D computer graphics, contrary to what the name suggests, are most often displayed on two-dimensional displays.
Visual effects (sometimes abbreviated VFX) is the process by which imagery is created or manipulated outside the context of a live-action shot in filmmaking and video production. The integration of live-action footage and other live-action footage or CGI elements to create realistic imagery is called VFX. VFX involves the integration of live-action footage (which may include in-camera special effects) and generated-imagery (digital or optics, animals or creatures) which look realistic, but would be dangerous, expensive, impractical, time-consuming or impossible to capture on film.
3D rendering is the 3D computer graphics process of converting 3D models into 2D images on a computer. 3D renders may include photorealistic effects or non-photorealistic styles. Rendering is the final process of creating the actual 2D image or animation from the prepared scene. This can be compared to taking a photo or filming the scene after the setup is finished in real life. Several different, and often specialized, rendering methods have been developed.
Explores estimating solar energy potential in Switzerland using GIS data analysis and Quantum GIS software.
, ,
Physically based differentiable rendering has recently evolved into a powerful tool for solving inverse problems involving light. Methods in this area perform a differentiable simulation of the physical process of light transport and scattering to estimate ...
ASSOC COMPUTING MACHINERY2020
Realistic rendering using discrete reflectance measurements is challenging, because arbitrary directions on the light and view hemispheres are queried at render time, incurring large memory requirements and the need for interpolation. This explains the des ...
WILEY2020
Physically-based rendering algorithms generate photorealistic images of virtual scenes. By simulating light paths in a scene, complex physical effects such as shadows, reflections and volumetric scattering can be reproduced. Over the last decade, physicall ...