Concept

Focal subgroup theorem

In abstract algebra, the focal subgroup theorem describes the fusion of elements in a Sylow subgroup of a finite group. The focal subgroup theorem was introduced in and is the "first major application of the transfer" according to . The focal subgroup theorem relates the ideas of transfer and fusion such as described in . Various applications of these ideas include local criteria for p-nilpotence and various non-simplicity criteria focussing on showing that a finite group has a normal subgroup of index p. The focal subgroup theorem relates several lines of investigation in finite group theory: normal subgroups of index a power of p, the transfer homomorphism, and fusion of elements. The following three normal subgroups of index a power of p are naturally defined, and arise as the smallest normal subgroups such that the quotient is (a certain kind of) p-group. Formally, they are kernels of the reflection onto the of p-groups (respectively, elementary abelian p-groups, abelian p-groups). Ep(G) is the intersection of all index p normal subgroups; G/Ep(G) is an elementary abelian group, and is the largest elementary abelian p-group onto which G surjects. Ap(G) (notation from ) is the intersection of all normal subgroups K such that G/K is an abelian p-group (i.e., K is an index normal subgroup that contains the derived group ): G/Ap(G) is the largest abelian p-group (not necessarily elementary) onto which G surjects. Op(G) is the intersection of all normal subgroups K of G such that G/K is a (possibly non-abelian) p-group (i.e., K is an index normal subgroup): G/Op(G) is the largest p-group (not necessarily abelian) onto which G surjects. Op(G) is also known as the p-residual subgroup. Firstly, as these are weaker conditions on the groups K, one obtains the containments These are further related as: Ap(G) = Op(G)[G,G]. Op(G) has the following alternative characterization as the subgroup generated by all Sylow q-subgroups of G as q≠p ranges over the prime divisors of the order of G distinct from p.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.