Concept

Constructible sheaf

In mathematics, a constructible sheaf is a sheaf of abelian groups over some topological space X, such that X is the union of a finite number of locally closed subsets on each of which the sheaf is a locally constant sheaf. It has its origins in algebraic geometry, where in étale cohomology constructible sheaves are defined in a similar way . For the derived category of constructible sheaves, see a section in l-adic sheaf. The finiteness theorem in étale cohomology states that the higher direct images of a constructible sheaf are constructible. Here we use the definition of constructible étale sheaves from the book by Freitag and Kiehl referenced below. In what follows in this subsection, all sheaves on schemes are étale sheaves unless otherwise noted. A sheaf is called constructible if can be written as a finite union of locally closed subschemes such that for each subscheme of the covering, the sheaf is a finite locally constant sheaf. In particular, this means for each subscheme appearing in the finite covering, there is an étale covering such that for all étale subschemes in the cover of , the sheaf is constant and represented by a finite set. This definition allows us to derive, from Noetherian induction and the fact that an étale sheaf is constant if and only if its restriction from to is constant as well, where is the reduction of the scheme . It then follows that a representable étale sheaf is itself constructible. Of particular interest to the theory of constructible étale sheaves is the case in which one works with constructible étale sheaves of Abelian groups. The remarkable result is that constructible étale sheaves of Abelian groups are precisely the Noetherian objects in the category of all torsion étale sheaves (cf. Proposition I.4.8 of Freitag-Kiehl). Most examples of constructible sheaves come from intersection cohomology sheaves or from the derived pushforward of a local system on a family of topological spaces parameterized by a base space.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (2)
MATH-658: Vanishing cycles and perverse sheaves
This course will explain the theory of vanishing cycles and perverse sheaves. We will see how the Hard Lefschetz theorem can be proved using perverse sheaves. If we have more time we will try to see t
MATH-643: Applied l-adic cohomology
In this course we will describe in numerous examples how methods from l-adic cohomology as developed by Grothendieck, Deligne and Katz can interact with methods from analytic number theory (prime numb
Related publications (6)
Related concepts (1)
Sheaf (mathematics)
In mathematics, a sheaf (: sheaves) is a tool for systematically tracking data (such as sets, abelian groups, rings) attached to the open sets of a topological space and defined locally with regard to them. For example, for each open set, the data could be the ring of continuous functions defined on that open set. Such data is well behaved in that it can be restricted to smaller open sets, and also the data assigned to an open set is equivalent to all collections of compatible data assigned to collections of smaller open sets covering the original open set (intuitively, every piece of data is the sum of its parts).

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.