**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Sheaf (mathematics)

Summary

In mathematics, a sheaf (: sheaves) is a tool for systematically tracking data (such as sets, abelian groups, rings) attached to the open sets of a topological space and defined locally with regard to them. For example, for each open set, the data could be the ring of continuous functions defined on that open set. Such data is well behaved in that it can be restricted to smaller open sets, and also the data assigned to an open set is equivalent to all collections of compatible data assigned to collections of smaller open sets covering the original open set (intuitively, every piece of data is the sum of its parts).
The field of mathematics that studies sheaves is called sheaf theory.
Sheaves are understood conceptually as general and abstract objects. Their correct definition is rather technical. They are specifically defined as sheaves of sets or as sheaves of rings, for example, depending on the type of data assigned to the open sets.
There are also maps (or morphisms) from one sheaf to another; sheaves (of a specific type, such as sheaves of abelian groups) with their morphisms on a fixed topological space form a . On the other hand, to each continuous map there is associated both a , taking sheaves and their morphisms on the domain to sheaves and morphisms on the codomain, and an operating in the opposite direction. These functors, and certain variants of them, are essential parts of sheaf theory.
Due to their general nature and versatility, sheaves have several applications in topology and especially in algebraic and differential geometry. First, geometric structures such as that of a differentiable manifold or a scheme can be expressed in terms of a sheaf of rings on the space. In such contexts, several geometric constructions such as vector bundles or divisors are naturally specified in terms of sheaves. Second, sheaves provide the framework for a very general cohomology theory, which encompasses also the "usual" topological cohomology theories such as singular cohomology.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (211)

Related courses (10)

Related lectures (57)

MATH-506: Topology IV.b - cohomology rings

Singular cohomology is defined by dualizing the singular chain complex for spaces. We will study its basic properties, see how it acquires a multiplicative structure and becomes a graded commutative a

MATH-510: Modern algebraic geometry

The aim of this course is to learn the basics of the modern scheme theoretic language of algebraic geometry.

MATH-643: Applied l-adic cohomology

In this course we will describe in numerous examples how methods from l-adic cohomology as developed by Grothendieck, Deligne and Katz can interact with methods from analytic number theory (prime numb

In mathematics, a sheaf (: sheaves) is a tool for systematically tracking data (such as sets, abelian groups, rings) attached to the open sets of a topological space and defined locally with regard to them. For example, for each open set, the data could be the ring of continuous functions defined on that open set. Such data is well behaved in that it can be restricted to smaller open sets, and also the data assigned to an open set is equivalent to all collections of compatible data assigned to collections of smaller open sets covering the original open set (intuitively, every piece of data is the sum of its parts).

In , a branch of mathematics, a Grothendieck topology is a structure on a category C that makes the objects of C act like the open sets of a topological space. A category together with a choice of Grothendieck topology is called a site. Grothendieck topologies axiomatize the notion of an open cover. Using the notion of covering provided by a Grothendieck topology, it becomes possible to define sheaves on a category and their cohomology. This was first done in algebraic geometry and algebraic number theory by Alexander Grothendieck to define the étale cohomology of a scheme.

Jean Leray (ləʁɛ; 7 November 1906 – 10 November 1998) was a French mathematician, who worked on both partial differential equations and algebraic topology. He was born in Chantenay-sur-Loire (today part of Nantes). He studied at École Normale Supérieure from 1926 to 1929. He received his Ph.D. in 1933. In 1934 Leray published an important paper that founded the study of weak solutions of the Navier–Stokes equations.

Cohomology Operations: Cup Products and Bockstein

Explores cup products, Bockstein homomorphisms, and Steenrod algebra in cohomology.

Graded Ring Structure on Cohomology

Explores the associative and commutative properties of the cup product in cohomology, with a focus on graded structures.

Cohomology: Cross Product

Explores cohomology and the cross product, demonstrating its application in group actions like conjugation.