2 51 honeycombDISPLAYTITLE:2 51 honeycomb In 8-dimensional geometry, the 251 honeycomb is a space-filling uniform tessellation. It is composed of 241 polytope and 8-simplex facets arranged in an 8-demicube vertex figure. It is the final figure in the 2k1 family. It is created by a Wythoff construction upon a set of 9 hyperplane mirrors in 8-dimensional space. The facet information can be extracted from its Coxeter-Dynkin diagram. Removing the node on the short branch leaves the 8-simplex.
2 31 polytopeDISPLAYTITLE:2 31 polytope In 7-dimensional geometry, 231 is a uniform polytope, constructed from the E7 group. Its Coxeter symbol is 231, describing its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of the 2-node branch. The rectified 231 is constructed by points at the mid-edges of the 231. These polytopes are part of a family of 127 (or 27−1) convex uniform polytopes in 7-dimensions, made of uniform polytope facets and vertex figures, defined by all permutations of rings in this Coxeter-Dynkin diagram: .
1 42 polytopeDISPLAYTITLE:1 42 polytope In 8-dimensional geometry, the 142 is a uniform 8-polytope, constructed within the symmetry of the E8 group. Its Coxeter symbol is 142, describing its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of the 1-node sequences. The rectified 142 is constructed by points at the mid-edges of the 142 and is the same as the birectified 241, and the quadrirectified 421.
Coxeter groupIn mathematics, a Coxeter group, named after H. S. M. Coxeter, is an abstract group that admits a formal description in terms of reflections (or kaleidoscopic mirrors). Indeed, the finite Coxeter groups are precisely the finite Euclidean reflection groups; the symmetry groups of regular polyhedra are an example. However, not all Coxeter groups are finite, and not all can be described in terms of symmetries and Euclidean reflections. Coxeter groups were introduced in 1934 as abstractions of reflection groups , and finite Coxeter groups were classified in 1935 .