Summary
In cosmology, the steady-state model or steady state theory is an alternative to the Big Bang theory of evolution of the universe. In the steady-state model, the density of matter in the expanding universe remains unchanged due to a continuous creation of matter, thus adhering to the perfect cosmological principle, a principle that says that the observable universe is always the same at any time and any place. From the 1940s to the 1960s, the astrophysical community was divided between supporters of the Big Bang theory and supporters of the steady-state theory. The steady-state model is now rejected by most cosmologists, astrophysicists, and astronomers. The observational evidence points to a hot Big Bang cosmology with a finite age of the universe, which the steady-state model does not predict. In the 13th century, Siger of Brabant authored the thesis The Eternity of the World, which argued that there was no first man, and no first specimen of any particular: the physical universe is thus without any first beginning, and therefore eternal. Siger's views were condemned by the pope in 1277. Cosmological expansion was originally seen through observations by Edwin Hubble. Theoretical calculations also showed that the static universe, as modeled by Albert Einstein (1917), was unstable. The modern Big Bang theory, first advanced by Father Georges Lemaître, is one in which the universe has a finite age and has evolved over time through cooling, expansion, and the formation of structures through gravitational collapse. On the other hand, the steady-state model says while the universe is expanding, it nevertheless does not change its appearance over time (the perfect cosmological principle). E.g., the universe has no beginning and no end. This required that matter be continually created in order to keep the universe's density from decreasing. Influential papers on the topic of a steady-state cosmology were published by Hermann Bondi, Thomas Gold, and Fred Hoyle in 1948. Similar models had been proposed earlier by William Duncan MacMillan, among others.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.