Agarose is a heteropolysaccharide, generally extracted from certain red seaweed. It is a linear polymer made up of the repeating unit of agarobiose, which is a disaccharide made up of D-galactose and 3,6-anhydro-L-galactopyranose. Agarose is one of the two principal components of agar, and is purified from agar by removing agar's other component, agaropectin. Agarose is frequently used in molecular biology for the separation of large molecules, especially DNA, by electrophoresis. Slabs of agarose gels (usually 0.7 - 2%) for electrophoresis are readily prepared by pouring the warm, liquid solution into a mold. A wide range of different agaroses of varying molecular weights and properties are commercially available for this purpose. Agarose may also be formed into beads and used in a number of chromatographic methods for protein purification. Agarose is a linear polymer with a molecular weight of about 120,000, consisting of alternating D-galactose and 3,6-anhydro-L-galactopyranose linked by α-(1→3) and β-(1→4) glycosidic bonds. The 3,6-anhydro-L-galactopyranose is an L-galactose with an anhydro bridge between the 3 and 6 positions, although some L-galactose units in the polymer may not contain the bridge. Some D-galactose and L-galactose units can be methylated, and pyruvate and sulfate are also found in small quantities. Each agarose chain contains ~800 molecules of galactose, and the agarose polymer chains form helical fibres that aggregate into supercoiled structure with a radius of 20-30 nanometre (nm). The fibers are quasi-rigid, and have a wide range of length depending on the agarose concentration. When solidified, the fibres form a three-dimensional mesh of channels of diameter ranging from 50 nm to >200 nm depending on the concentration of agarose used - higher concentrations yield lower average pore diameters. The 3-D structure is held together with hydrogen bonds and can therefore be disrupted by heating back to a liquid state. Agarose is available as a white powder which dissolves in near-boiling water, and forms a gel when it cools.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (2)
CH-319: Experimental biochemistry and biophysics
A 7-week long (4+8 h) experiment where you plan and construct a fluorescent sensor protein starting from DNA bricks. The protein will be expressed in and purified from E.coli, characterized by bioche
PHYS-468: Physics of life
Life has emerged on our planet from physical principles such as molecular self-organization, thermodynamics, stochastics and iterative refinement. This course will introduce the physical methods to st
Related lectures (17)
Chromatography: Protein Purification
Explains chromatography principles for protein purification, covering peak broadening causes, band broadening components, and common stationary phases.
Electrophoresis: Amino Acids and Protein Analysis
Explores amino acids, protein analysis, pH gradient setup, and electroblotting techniques for DNA and proteins.
Characterization of Proteins by Electrophoresis
Explores the physics of electrophoresis for protein characterization, covering Native Gel, SDS-PAGE, and 2D Gel.
Show more
Related publications (36)

High-Density Immobilization of TCEP on Silica Beads for Efficient Disulfide Reduction and Thiol Alkylation in Peptides

Christian Heinis

Tris-(2-carboxyethyl)phosphine (TCEP) linked to agarose beads is widely used for reducing disulfide bridges in proteins and peptides. The immobilization of TCEP on beads allows efficient removal after reduction to prevent its reaction with alkylating reage ...
Weinheim2023

Direct high-temperature growth of single-crystalline GaN on ScAlMgO4 substrates by metalorganic chemical vapor deposition

Elison de Nazareth Matioli, Alessandro Floriduz

In this note, we demonstrate direct high-temperature growth of single-crystalline GaN on c-plane ScAlMgO4 substrates by metalorganic chemical vapor deposition, without using low-temperature buffers. We found that a trimethylaluminium preflow was crucial to ...
IOP Publishing Ltd2022

Absolute quantification of pceABCT gene products and characterization of the membrane protein complex responsible for the reduction of tetrachloroethene in Dehalobacter restrictus

Christof Holliger, Julien Maillard, Adrian Schmid, Lorenzo Cimmino

The pceABCT gene cluster from Dehalobacter restrictus is one model system for tetrachloroethene (PCE) respiration. In the present study we aim to decipher the stoichiometry of the pceABCT gene products and the composition of PceA-containing membrane-bound ...
2021
Show more
Related concepts (5)
Gel electrophoresis
Gel electrophoresis is a method for separation and analysis of biomacromolecules (DNA, RNA, proteins, etc.) and their fragments, based on their size and charge. It is used in clinical chemistry to separate proteins by charge or size (IEF agarose, essentially size independent) and in biochemistry and molecular biology to separate a mixed population of DNA and RNA fragments by length, to estimate the size of DNA and RNA fragments or to separate proteins by charge.
Agar
Agar (ˈeɪɡɑːr or ˈɑːgər), or agar-agar, is a jelly-like substance consisting of polysaccharides obtained from the cell walls of some species of red algae, primarily from "ogonori" (Gracilaria) and "tengusa" (Gelidiaceae). As found in nature, agar is a mixture of two components, the linear polysaccharide agarose and a heterogeneous mixture of smaller molecules called agaropectin. It forms the supporting structure in the cell walls of certain species of algae and is released on boiling.
Agarose gel electrophoresis
Agarose gel electrophoresis is a method of gel electrophoresis used in biochemistry, molecular biology, genetics, and clinical chemistry to separate a mixed population of macromolecules such as DNA or proteins in a matrix of agarose, one of the two main components of agar. The proteins may be separated by charge and/or size (isoelectric focusing agarose electrophoresis is essentially size independent), and the DNA and RNA fragments by length.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.