Agar (ˈeɪɡɑːr or ˈɑːgər), or agar-agar, is a jelly-like substance consisting of polysaccharides obtained from the cell walls of some species of red algae, primarily from "ogonori" (Gracilaria) and "tengusa" (Gelidiaceae). As found in nature, agar is a mixture of two components, the linear polysaccharide agarose and a heterogeneous mixture of smaller molecules called agaropectin. It forms the supporting structure in the cell walls of certain species of algae and is released on boiling. These algae are known as agarophytes, belonging to the Rhodophyta (red algae) phylum. The processing of food-grade agar removes the agaropectin, and the commercial product is essentially pure agarose.
Agar has been used as an ingredient in desserts throughout Asia and also as a solid substrate to contain culture media for microbiological work. Agar can be used as a laxative; an appetite suppressant; a vegan substitute for gelatin; a thickener for soups; in fruit preserves, ice cream, and other desserts; as a clarifying agent in brewing; and for sizing paper and fabrics.
The word "agar" comes from agar-agar, the Malay name for red algae (Gigartina, Eucheuma, Gracilaria) from which the jelly is produced. It is also known as Kanten (寒天) (from the phrase kan-zarashi tokoroten (寒曬心太) or “cold-exposed agar”), Japanese isinglass, China grass, Ceylon moss or Jaffna moss. Gracilaria edulis or its synonym G. lichenoides is specifically referred to as agal-agal or Ceylon agar.
The application of agar as a food additive may have been discovered in Japan in 1658 by Mino Tarōzaemon ( ), an innkeeper in current Fushimi-ku, Kyoto who, according to legend, was said to have discarded surplus seaweed soup (Tokoroten) and noticed that it gelled later after a winter night's freezing. Over the following centuries, agar became a common gelling agent in several Asian cuisines.
Jelly seaweeds were favoured and foraged by Malay communities living on the coasts of the Riau Archipelago and Singapore in Southeast Asia for centuries.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Bacteria (bækˈtɪəriə; : bacterium) are ubiquitous, mostly free-living organisms often consisting of one biological cell. They constitute a large domain of prokaryotic microorganisms. Typically a few micrometres in length, bacteria were among the first life forms to appear on Earth, and are present in most of its habitats. Bacteria inhabit soil, water, acidic hot springs, radioactive waste, and the deep biosphere of Earth's crust. Bacteria play a vital role in many stages of the nutrient cycle by recycling nutrients and the fixation of nitrogen from the atmosphere.
A microorganism, or microbe, is an organism of microscopic size, which may exist in its single-celled form or as a colony of cells. The possible existence of unseen microbial life was suspected from ancient times, such as in Jain scriptures from sixth century BC India. The scientific study of microorganisms began with their observation under the microscope in the 1670s by Anton van Leeuwenhoek. In the 1850s, Louis Pasteur found that microorganisms caused food spoilage, debunking the theory of spontaneous generation.
A microbiological culture, or microbial culture, is a method of multiplying microbial organisms by letting them reproduce in predetermined culture medium under controlled laboratory conditions. Microbial cultures are foundational and basic diagnostic methods used as research tools in molecular biology. The term culture can also refer to the microorganisms being grown. Microbial cultures are used to determine the type of organism, its abundance in the sample being tested, or both.
Microfluidic models are proving to be powerful systems to study fundamental processes in porous media, due to their ability to replicate topologically complex environments while allowing detailed, quantitative observations at the pore scale. Yet, while por ...
Bacteria often colonize their environment in the form of surface attached multicellular communities called biofilms. Biofilms grow from surface-attached cells that undergo division while self-embedding in a viscoelastic matrix. Biofilms grow at the surface ...
The present doctoral thesis aimed to achieve a robust cultivation of microalgae by recycling nitrogen from a liquid digestate. However, the use of non-sterile nutrient source increases the risks of contamination of undesired organisms such as bacteria, vir ...