The stigma () is the receptive tip of a carpel, or of several fused carpels, in the gynoecium of a flower.
The stigma, together with the style and ovary (typically called the stigma-style-ovary system) comprises the pistil, which is part of the gynoecium or female reproductive organ of a plant. The stigma itself forms the distal portion of the style, or stylodia, and is composed of , the cells of which are receptive to pollen. These may be restricted to the apex of the style or, especially in wind pollinated species, cover a wide surface.
The stigma receives pollen and it is on the stigma that the pollen grain germinates. Often sticky, the stigma is adapted in various ways to catch and trap pollen with various hairs, flaps, or sculpturings. The pollen may be captured from the air (wind-borne pollen, anemophily), from visiting insects or other animals (biotic pollination), or in rare cases from surrounding water (hydrophily). Stigma can vary from long and slender to globe shaped to feathery.
Pollen is typically highly desiccated when it leaves an anther. Stigma have been shown to assist in the rehydration of pollen and in promoting germination of the pollen tube. Stigma also ensure proper adhesion of the correct species of pollen. Stigma can play an active role in pollen discrimination and some self-incompatibility reactions, that reject pollen from the same or genetically similar plants, involve interaction between the stigma and the surface of the pollen grain.
The stigma is often split into lobes, e.g. trifid (three lobed), and may resemble the head of a pin (capitate), or come to a point (punctiform). The shape of the stigma may vary considerably:
The style is a narrow upward extension of the ovary, connecting it to the stigmatic papillae. Occasionally it may be absent, in which case the stigma is described as sessile. Styles are generally tube-like—either long or short. The style can be open (containing few or no cells in the central portion) with a central canal which may be filled with mucilage.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A flower, sometimes known as a bloom or blossom, is the reproductive structure found in flowering plants (plants of the division Angiospermae). Flowers produce gametophytes, which in flowering plants consist of a few haploid cells which produce gametes. The "male" gametophyte, which produces non-motile sperm, is enclosed within pollen grains; the "female" gametophyte is contained within the ovule. When pollen from the anther of a flower is deposited on the stigma, this is called pollination.
Saffron (ˈsæfrən,_-rɒn) is a spice derived from the flower of Crocus sativus, commonly known as the "saffron crocus". The vivid crimson stigma and styles, called threads, are collected and dried for use mainly as a seasoning and colouring agent in food. Although some doubts remain on its origin, it is believed that saffron originated in Iran. However, Greece and Mesopotamia have also been suggested as the possible region of origin of this plant.
The stamen (: stamina or stamens) is the pollen-producing reproductive organ of a flower. Collectively the stamens form the androecium. A stamen typically consists of a stalk called the filament and an anther which contains microsporangia. Most commonly anthers are two-lobed (each lobe is termed a locule) and are attached to the filament either at the base or in the middle area of the anther. The sterile tissue between the lobes is called the connective, an extension of the filament containing conducting strands.
Plant reproduction relies on the highly regulated growth of the pollen tube for sperm delivery. This process is controlled by secreted RALF signaling peptides, which have previously been shown to be perceived by Catharanthus roseus RLK1-like (CrRLK1Ls) mem ...
The formation of feathery grains during semi-continuous casting of Al-alloys [1, 2] is an interesting problem from both practical and theoretical points of view. These structures are formed by a lamellar sequence of twinned and untwinned regions separated ...
The formation of twinned dendrites (feathery grains) in binary Al-Zn, Al-Mg, Al-Cu and Al-Ni alloys has been studied in specimens directionally solidified under identical thermal conditions, i.e. G approximate to 100 K cm(-1), v approximate to 1 mm s(-1), ...