In mathematics, for a sequence of complex numbers a1, a2, a3, ... the infinite product
is defined to be the limit of the partial products a1a2...an as n increases without bound. The product is said to converge when the limit exists and is not zero. Otherwise the product is said to diverge. A limit of zero is treated specially in order to obtain results analogous to those for infinite sums. Some sources allow convergence to 0 if there are only a finite number of zero factors and the product of the non-zero factors is non-zero, but for simplicity we will not allow that here. If the product converges, then the limit of the sequence an as n increases without bound must be 1, while the converse is in general not true.
The best known examples of infinite products are probably some of the formulae for π, such as the following two products, respectively by Viète (Viète's formula, the first published infinite product in mathematics) and John Wallis (Wallis product):
The product of positive real numbers
converges to a nonzero real number if and only if the sum
converges. This allows the translation of convergence criteria for infinite sums into convergence criteria for infinite products. The same criterion applies to products of arbitrary complex numbers (including negative reals) if the logarithm is understood as a fixed branch of logarithm which satisfies ln(1) = 0, with the proviso that the infinite product diverges when infinitely many an fall outside the domain of ln, whereas finitely many such an can be ignored in the sum.
For products of reals in which each , written as, for instance, , where , the bounds
show that the infinite product converges if the infinite sum of the pn converges. This relies on the Monotone convergence theorem. We can show the converse by observing that, if , then
and by the limit comparison test it follows that the two series
are equivalent meaning that either they both converge or they both diverge.
The same proof also shows that if for some , then converges to a non-zero number if and only if converges.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The goal of this course is to treat selected topics in complex analysis. We will mostly focus on holomorphic functions in one variable. At the end we will also discuss holomorphic functions in several
In mathematics, the Leibniz formula for pi, named after Gottfried Wilhelm Leibniz, states that an alternating series. It is sometimes called the Madhava–Leibniz series as it was first discovered by the Indian mathematician Madhava of Sangamagrama or his followers in the 14th–15th century (see Madhava series), and was later independently rediscovered by James Gregory in 1671 and Leibniz in 1673.
In mathematics, the Wallis product for pi, published in 1656 by John Wallis, states that Wallis derived this infinite product using interpolation, though his method is not regarded as rigorous. A modern derivation can be found by examining for even and odd values of , and noting that for large , increasing by 1 results in a change that becomes ever smaller as increases. Let (This is a form of Wallis' integrals.) Integrate by parts: Now, we make two variable substitutions for convenience to obtain: We obtain values for and for later use.
In mathematics, and particularly in the field of complex analysis, the Weierstrass factorization theorem asserts that every entire function can be represented as a (possibly infinite) product involving its zeroes. The theorem may be viewed as an extension of the fundamental theorem of algebra, which asserts that every polynomial may be factored into linear factors, one for each root. The theorem, which is named for Karl Weierstrass, is closely related to a second result that every sequence tending to infinity has an associated entire function with zeroes at precisely the points of that sequence.
, ,
Herein we report a mild synthesis of propargyl silanes from terminal alkynes. We exploit a bromonaphthyl-substituted silane as a silylmethyl electrophile surrogate, which participates in a Sonogashira reaction after an aryl-to-alkyl Pd-migration. Twenty-se ...
Recently, we have established and used the generalized Littlewood theorem concerning contour integrals of the logarithm of an analytical function to obtain a few new criteria equivalent to the Riemann hypothesis. Here, the same theorem is applied to calcul ...
Amino alcohols, cyclopropanes and nitriles are privileged structural motifs found in the scaffold of natural products and bioactive compounds. In addition, they are versatile building blocks in organic chemistry. The development of new and increasingly eff ...