Summary
In physics, a sigma model is a field theory that describes the field as a point particle confined to move on a fixed manifold. This manifold can be taken to be any Riemannian manifold, although it is most commonly taken to be either a Lie group or a symmetric space. The model may or may not be quantized. An example of the non-quantized version is the Skyrme model; it cannot be quantized due to non-linearities of power greater than 4. In general, sigma models admit (classical) topological soliton solutions, for example, the Skyrmion for the Skyrme model. When the sigma field is coupled to a gauge field, the resulting model is described by Ginzburg–Landau theory. This article is primarily devoted to the classical field theory of the sigma model; the corresponding quantized theory is presented in the article titled "non-linear sigma model". The sigma model was introduced by ; the name σ-model comes from a field in their model corresponding to a spinless meson called σ, a scalar meson introduced earlier by Julian Schwinger. The model served as the dominant prototype of spontaneous symmetry breaking of O(4) down to O(3): the three axial generators broken are the simplest manifestation of chiral symmetry breaking, the surviving unbroken O(3) representing isospin. In conventional particle physics settings, the field is generally taken to be SU(N), or the vector subspace of quotient of the product of left and right chiral fields. In condensed matter theories, the field is taken to be O(N). For the rotation group O(3), the sigma model describes the isotropic ferromagnet; more generally, the O(N) model shows up in the quantum Hall effect, superfluid Helium-3 and spin chains. In supergravity models, the field is taken to be a symmetric space. Since symmetric spaces are defined in terms of their involution, their tangent space naturally splits into even and odd parity subspaces. This splitting helps propel the dimensional reduction of Kaluza–Klein theories.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.