Summary
Lagrangian field theory is a formalism in classical field theory. It is the field-theoretic analogue of Lagrangian mechanics. Lagrangian mechanics is used to analyze the motion of a system of discrete particles each with a finite number of degrees of freedom. Lagrangian field theory applies to continua and fields, which have an infinite number of degrees of freedom. One motivation for the development of the Lagrangian formalism on fields, and more generally, for classical field theory, is to provide a clean mathematical foundation for quantum field theory, which is infamously beset by formal difficulties that make it unacceptable as a mathematical theory. The Lagrangians presented here are identical to their quantum equivalents, but, in treating the fields as classical fields, instead of being quantized, one can provide definitions and obtain solutions with properties compatible with the conventional formal approach to the mathematics of partial differential equations. This enables the formulation of solutions on spaces with well-characterized properties, such as Sobolev spaces. It enables various theorems to be provided, ranging from proofs of existence to the uniform convergence of formal series to the general settings of potential theory. In addition, insight and clarity is obtained by generalizations to Riemannian manifolds and fiber bundles, allowing the geometric structure to be clearly discerned and disentangled from the corresponding equations of motion. A clearer view of the geometric structure has in turn allowed highly abstract theorems from geometry to be used to gain insight, ranging from the Chern–Gauss–Bonnet theorem and the Riemann–Roch theorem to the Atiyah–Singer index theorem and Chern–Simons theory. In field theory, the independent variable is replaced by an event in spacetime (x, y, z, t), or more generally still by a point s on a Riemannian manifold.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.