Douglas HofstadterDouglas Richard Hofstadter (born February 15, 1945) is an American scholar of cognitive science, physics, and comparative literature whose research includes concepts such as the sense of self in relation to the external world, consciousness, analogy-making, artistic creation, literary translation, and discovery in mathematics and physics. His 1979 book Gödel, Escher, Bach: An Eternal Golden Braid won both the Pulitzer Prize for general nonfiction and a National Book Award (at that time called The American Book Award) for Science.
The monkey and the coconutsThe monkey and the coconuts is a mathematical puzzle in the field of Diophantine analysis that originated in a magazine fictional short story involving five sailors and a monkey on a desert island who divide up a pile of coconuts; the problem is to find the number of coconuts in the original pile (fractional coconuts not allowed). The problem is notorious for its confounding difficulty to unsophisticated puzzle solvers, though with the proper mathematical approach, the solution is trivial.
Richard K. GuyRichard Kenneth Guy (30 September 1916 – 9 March 2020) was a British mathematician. He was a professor in the Department of Mathematics at the University of Calgary. He is known for his work in number theory, geometry, recreational mathematics, combinatorics, and graph theory. He is best known for co-authorship (with John Conway and Elwyn Berlekamp) of Winning Ways for your Mathematical Plays and authorship of Unsolved Problems in Number Theory. He published more than 300 scholarly articles.
Donald KnuthDonald Ervin Knuth (kəˈnuːθ ; born January 10, 1938) is an American computer scientist, mathematician, and professor emeritus at Stanford University. He is the 1974 recipient of the ACM Turing Award, informally considered the Nobel Prize of computer science. Knuth has been called the "father of the analysis of algorithms". He is the author of the multi-volume work The Art of Computer Programming and contributed to the development of the rigorous analysis of the computational complexity of algorithms and systematized formal mathematical techniques for it.
CombinatoricsCombinatorics is an area of mathematics primarily concerned with counting, both as a means and an end in obtaining results, and certain properties of finite structures. It is closely related to many other areas of mathematics and has many applications ranging from logic to statistical physics and from evolutionary biology to computer science. Combinatorics is well known for the breadth of the problems it tackles. Combinatorial problems arise in many areas of pure mathematics, notably in algebra, probability theory, topology, and geometry, as well as in its many application areas.
FractalIn mathematics, a fractal is a geometric shape containing detailed structure at arbitrarily small scales, usually having a fractal dimension strictly exceeding the topological dimension. Many fractals appear similar at various scales, as illustrated in successive magnifications of the Mandelbrot set. This exhibition of similar patterns at increasingly smaller scales is called self-similarity, also known as expanding symmetry or unfolding symmetry; if this replication is exactly the same at every scale, as in the Menger sponge, the shape is called affine self-similar.