A distributed operating system is system software over a collection of independent software, networked, communicating, and physically separate computational nodes. They handle jobs which are serviced by multiple CPUs. Each individual node holds a specific software subset of the global aggregate operating system. Each subset is a composite of two distinct service provisioners. The first is a ubiquitous minimal kernel, or microkernel, that directly controls that node's hardware. Second is a higher-level collection of system management components that coordinate the node's individual and collaborative activities. These components abstract microkernel functions and support user applications.
The microkernel and the management components collection work together. They support the system's goal of integrating multiple resources and processing functionality into an efficient and stable system. This seamless integration of individual nodes into a global system is referred to as transparency, or ; describing the illusion provided to users of the global system's appearance as a single computational entity.
A distributed OS provides the essential services and functionality required of an OS but adds attributes and particular configurations to allow it to support additional requirements such as increased scale and availability. To a user, a distributed OS works in a manner similar to a single-node, monolithic operating system. That is, although it consists of multiple nodes, it appears to users and applications as a single-node.
Separating minimal system-level functionality from additional user-level modular services provides a "separation of mechanism and policy". Mechanism and policy can be simply interpreted as "what something is done" versus "how something is done," respectively. This separation increases flexibility and scalability.
At each locale (typically a node), the kernel provides a minimally complete set of node-level utilities necessary for operating a node's underlying hardware and resources.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Amoeba is a distributed operating system developed by Andrew S. Tanenbaum and others at the Vrije Universiteit Amsterdam. The aim of the Amoeba project was to build a timesharing system that makes an entire network of computers appear to the user as a . Development at the Vrije Universiteit was stopped: the source code of the latest version (5.3) was last modified on 30 July 1996. The Python programming language was originally developed for this platform.
A computer cluster is a set of computers that work together so that they can be viewed as a single system. Unlike grid computers, computer clusters have each node set to perform the same task, controlled and scheduled by software. The components of a cluster are usually connected to each other through fast local area networks, with each node (computer used as a server) running its own instance of an operating system. In most circumstances, all of the nodes use the same hardware and the same operating system, although in some setups (e.
MINIX (from mini-Unix) is a Unix-like operating system based on a microkernel architecture. Since version 2.0, it has been Portable Operating System Interface (POSIX) compliant. Early versions of MINIX were created by Andrew S. Tanenbaum for educational purposes. Starting with MINIX 3, the primary aim of development shifted from education to the creation of a highly reliable and self-healing microkernel OS. MINIX 3 was developed as open-source software.
This course is intended for students who want to understand modern large-scale data analysis
systems and database systems. The course covers fundamental principles for understanding
and building syste
The scale and pervasiveness of the Internet make it a pillar of planetary communication, industry and economy, as well as a fundamental medium for public discourse and democratic engagement. In stark contrast with the Internet's decentralized infrastructur ...
EPFL2024
This is an introduction of the course distributed systems. I designed and created these slides to teach the DAT-520 Distributed Systems master course when I was a professor at University of Stavanger. Some slides are modified and logos were removed. ...
2024
, , , ,
Numerical simulations have become one of the key tools used by theorists in all the fields of astrophysics and cosmology. The development of modern tools that target the largest existing computing systems and exploit state-of-the-art numerical methods and ...