The history of metamaterials begins with artificial dielectrics in microwave engineering as it developed just after World War II. Yet, there are seminal explorations of artificial materials for manipulating electromagnetic waves at the end of the 19th century.
Hence, the history of metamaterials is essentially a history of developing certain types of manufactured materials, which interact at radio frequency, microwave, and later optical frequencies.
As the science of materials has advanced, photonic materials have been developed which use the photon of light as the fundamental carrier of information. This has led to photonic crystals, and at the beginning of the new millennium, the proof of principle for functioning metamaterials with a negative index of refraction in the microwave- (at 10.5 Gigahertz) and optical range. This was followed by the first proof of principle for metamaterial cloaking (shielding an object from view), also in the microwave range, about six years later. However, a cloak that can conceal objects across the entire electromagnetic spectrum is still decades away. Many physics and engineering problems need to be solved.
Nevertheless, negative refractive materials have led to the development of metamaterial antennas and metamaterial microwave lenses for miniature wireless system antennas which are more efficient than their conventional counterparts. Also, metamaterial antennas are now commercially available. Meanwhile, subwavelength focusing with the superlens is also a part of present-day metamaterials research.
Classical waves transfer energy without transporting matter through the medium (material). For example, waves in a pond do not carry the water molecules from place to place; rather the wave's energy travels through the water, leaving the water molecules in place. Additionally, charged particles, such as electrons and protons create electromagnetic fields when they move, and these fields transport the type of energy known as electromagnetic radiation, or light.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In this advanced electromagnetics course, you will develop a solid theoretical understanding of wave-matter interactions in natural materials and artificially structured photonic media and devices.
A terahertz metamaterial is a class of composite metamaterials designed to interact at terahertz (THz) frequencies. The terahertz frequency range used in materials research is usually defined as 0.1 to 10 THz. This bandwidth is also known as the terahertz gap because it is noticeably underutilized. This is because terahertz waves are electromagnetic waves with frequencies higher than microwaves but lower than infrared radiation and visible light.
A nonlinear metamaterial is an artificially constructed material that can exhibit properties not yet found in nature. Its response to electromagnetic radiation can be characterized by its permittivity and material permeability. The product of the permittivity and permeability results in the refractive index. Unlike natural materials, nonlinear metamaterials can produce a negative refractive index. These can also produce a more pronounced nonlinear response than naturally occurring materials.
Metamaterials was a peer-reviewed scientific journal that was established in March 2007. It was published by Elsevier in association with the Metamorphose Network of Excellence. The coordinating editor was Mikhail Lapine. The journal was published quarterly, with occasional special issues. It covered research concerning metamaterials, such as artificial electromagnetic materials, which includes various types of composite periodic structures and frequency selective surfaces in the microwave and optical range.
Explores the design and applications of reconfigurable metasurfaces in advanced optics, including switchable magnetic metamaterials and responsive metasurfaces.
This paper presents a solution to overcome the inherently limited bandwidth of substrate-integrated waveguide (SIW) slot antennas. It is analytically shown that by decreasing the permittivity of a dielectric loaded slot antenna, the resulting bandwidth inc ...
Although graphene has met many of its initially predicted optoelectronic, thermal, and mechanical properties, photodetectors with large spectral bandwidths and extremely high frequency responses remain outstanding. In this work, we demonstrate a >500 gigah ...
Recently, there has been growing interest in the use of metamaterial (MTM)-based lenses, also known as metalenses, as innovative antenna technology. Increasingly widespread applications of metalenses in modern microwave communication and sensing systems ha ...