Orthometric heightThe orthometric height is the vertical distance H along the plumb line from a point of interest to a reference surface known as the geoid, the vertical datum that approximates mean sea level. Orthometric height is one of the scientific formalizations of a laypersons' "height above sea level", along with other types of heights in Geodesy. In the US, the current NAVD88 datum is tied to a defined elevation at one point rather than to any location's exact mean sea level.
Vertical positionVertical position or vertical location is a position along a vertical direction above or below a given vertical datum (reference level). Vertical distance or vertical separation is the distance between two vertical positions. Many vertical coordinates exist for expressing vertical position: depth, height, altitude, elevation, etc. Points lying on an equigeopotential surface are said to be on the same vertical level, as in a water level.
Dynamic heightDynamic height is a way of specifying the vertical position of a point above a vertical datum; it is an alternative for orthometric height or normal height. It can be computed by dividing the location's geopotential number by the normal gravity at 45 degree latitude (a constant). Dynamic height is constant if one follows the same gravity potential as one moves from place to place. Because of variations in gravity, surfaces having a constant difference in dynamic height may be closer or further apart in various places.
Physical geodesyPhysical geodesy is the study of the physical properties of Earth's gravity and its potential field (the geopotential), with a view to their application in geodesy. Traditional geodetic instruments such as theodolites rely on the gravity field for orienting their vertical axis along the local plumb line or local vertical direction with the aid of a spirit level. After that, vertical angles (zenith angles or, alternatively, elevation angles) are obtained with respect to this local vertical, and horizontal angles in the plane of the local horizon, perpendicular to the vertical.
GeoidThe geoid (ˈdʒiː.oɪd) is the shape that the ocean surface would take under the influence of the gravity of Earth, including gravitational attraction and Earth's rotation, if other influences such as winds and tides were absent. This surface is extended through the continents (such as with very narrow hypothetical canals). According to Gauss, who first described it, it is the "mathematical figure of the Earth", a smooth but irregular surface whose shape results from the uneven distribution of mass within and on the surface of Earth.
GeodesyGeodesy is the science of measuring and representing the geometry, gravity, and spatial orientation of the Earth in temporally varying 3D. It is called planetary geodesy when studying other astronomical bodies, such as planets or circumplanetary systems. Geodynamical phenomena, including crustal motion, tides, and polar motion, can be studied by designing global and national control networks, applying space geodesy and terrestrial geodetic techniques, and relying on datums and coordinate systems.