In theoretical physics, a minimal model or Virasoro minimal model is a two-dimensional conformal field theory whose spectrum is built from finitely many irreducible representations of the Virasoro algebra.
Minimal models have been classified and solved, and found to obey an ADE classification.
The term minimal model can also refer to a rational CFT based on an algebra that is larger than the Virasoro algebra, such as a W-algebra.
In minimal models, the central charge of the Virasoro algebra takes values of the type
where are coprime integers such that .
Then the conformal dimensions of degenerate representations are
and they obey the identities
The spectrums of minimal models are made of irreducible, degenerate lowest-weight representations of the Virasoro algebra, whose conformal dimensions are of the type with
Such a representation is a coset of a Verma module by its infinitely many nontrivial submodules. It is unitary if and only if . At a given central charge, there are distinct representations of this type. The set of these representations, or of their conformal dimensions, is called the Kac table with parameters . The Kac table is usually drawn as a rectangle of size , where each representation appears twice
due to the relation
The fusion rules of the multiply degenerate representations encode constraints from all their null vectors. They can therefore be deduced from the fusion rules of simply degenerate representations, which encode constraints from individual null vectors. Explicitly, the fusion rules are
where the sums run by increments of two.
For any coprime integers such that , there exists a diagonal minimal model whose spectrum contains one copy of each distinct representation in the Kac table:
The and models are the same.
The OPE of two fields involves all the fields that are allowed by the fusion rules of the corresponding representations.
A D-series minimal model with the central charge exists if or is even and at least . Using the symmetry
we assume that is even, then is odd.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course is an introduction to the non-perturbative bootstrap approach to Conformal Field Theory and to the Gauge/Gravity duality, emphasizing the fruitful interplay between these two ideas.
The course will focus on a probabilistic construction of a conformal field theory related to random Riemann surfaces, called the Liouville conformal field theory. The symmetries of the theory allow to
In conformal field theory and representation theory, a W-algebra is an associative algebra that generalizes the Virasoro algebra. W-algebras were introduced by Alexander Zamolodchikov, and the name "W-algebra" comes from the fact that Zamolodchikov used the letter W for one of the elements of one of his examples. A W-algebra is an associative algebra that is generated by the modes of a finite number of meromorphic fields , including the energy-momentum tensor . For , is a primary field of conformal dimension .
A two-dimensional conformal field theory is a quantum field theory on a Euclidean two-dimensional space, that is invariant under local conformal transformations. In contrast to other types of conformal field theories, two-dimensional conformal field theories have infinite-dimensional symmetry algebras. In some cases, this allows them to be solved exactly, using the conformal bootstrap method. Notable two-dimensional conformal field theories include minimal models, Liouville theory, massless free bosonic theories, Wess–Zumino–Witten models, and certain sigma models.
The conformal bootstrap is a non-perturbative mathematical method to constrain and solve conformal field theories, i.e. models of particle physics or statistical physics that exhibit similar properties at different levels of resolution. Unlike more traditional techniques of quantum field theory, conformal bootstrap does not use the Lagrangian of the theory. Instead, it operates with the general axiomatic parameters, such as the scaling dimensions of the local operators and their operator product expansion coefficients.
Critical statistical mechanics and Conformal Field Theory (CFT) are conjecturally connected since the seminal work of Beliavin et al. (Nucl Phys B 241(2):333-380, 1984). Both exhibit exactly solvable structures in two dimensions. A long-standing question ( ...
SPRINGER2022
,
Slip at a frictional interface occurs via intermittent events. Understanding how these events are nucleated, can propagate, or stop spontaneously remains a challenge, central to earthquake science and tribology. In the absence of disorder, rate-and-state a ...
We prove that in any unitary CFT, a twist gap in the spectrum of operator product expansion (OPE) of identical scalar quasiprimary operators (i.e. phi x phi) implies the existence of a family of quasiprimary operators O t,l with spins l ->.infinity and twi ...