Two-terminal components and electrical networks can be connected in series or parallel. The resulting electrical network will have two terminals, and itself can participate in a series or parallel topology. Whether a two-terminal "object" is an electrical component (e.g. a resistor) or an electrical network (e.g. resistors in series) is a matter of perspective. This article will use "component" to refer to a two-terminal "object" that participate in the series/parallel networks.
Components connected in series are connected along a single "electrical path", and each component has the same electric current through it, equal to the current through the network. The voltage across the network is equal to the sum of the voltages across each component.
Components connected in parallel are connected along multiple paths, and each component has the same voltage across it, equal to the voltage across the network. The current through the network is equal to the sum of the currents through each component.
The two preceding statements are equivalent, except for exchanging the role of voltage and current.
A circuit composed solely of components connected in series is known as a series circuit; likewise, one connected completely in parallel is known as a parallel circuit. Many circuits can be analyzed as a combination of series and parallel circuits, along with other configurations.
In a series circuit, the current that flows through each of the components is the same, and the voltage across the circuit is the sum of the individual voltage drops across each component. In a parallel circuit, the voltage across each of the components is the same, and the total current is the sum of the currents flowing through each component.
Consider a very simple circuit consisting of four light bulbs and a 12-volt automotive battery. If a wire joins the battery to one bulb, to the next bulb, to the next bulb, to the next bulb, then back to the battery in one continuous loop, the bulbs are said to be in series.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Le but de ce cours est d'apporter les connaissances et les expériences fondamentales pour comprendre les systèmes électriques et électroniques de base.
Ce cours introduit les lois fondamentales de l'électricité et les méthodes permettant d'analyser des circuits électriques linéaires, composés de résistances, condensateurs et inductances. On commencer
Découvrez les circuits électriques linéaires. Apprenez à les maîtriser et à les résoudre, dans un premier temps en régime continu puis en régime alternatif.
Découvrez les circuits électriques linéaires. Apprenez à les maîtriser et à les résoudre, dans un premier temps en régime continu puis en régime alternatif.
A Wheatstone bridge is an electrical circuit used to measure an unknown electrical resistance by balancing two legs of a bridge circuit, one leg of which includes the unknown component. The primary benefit of the circuit is its ability to provide extremely accurate measurements (in contrast with something like a simple voltage divider). Its operation is similar to the original potentiometer. The Wheatstone bridge was invented by Samuel Hunter Christie (sometimes spelled "Christy") in 1833 and improved and popularized by Sir Charles Wheatstone in 1843.
A capacitor is a device that stores electrical energy in an electric field by accumulating electric charges on two closely spaced surfaces that are insulated from each other. It is a passive electronic component with two terminals. The effect of a capacitor is known as capacitance. While some capacitance exists between any two electrical conductors in proximity in a circuit, a capacitor is a component designed to add capacitance to a circuit.
As originally stated in terms of direct-current resistive circuits only, Thévenin's theorem states that "Any linear electrical network containing only voltage sources, current sources and resistances can be replaced at terminals A–B by an equivalent combination of a voltage source Vth in a series connection with a resistance Rth." The equivalent voltage Vth is the voltage obtained at terminals A–B of the network with terminals A–B open circuited.
The versatility of half-bridge configuration of silicon carbide (SiC) metal-oxide-semiconductor field-effect transistor (MOSFET) power module contributes to its widespread adoption, highlighting the popularity and significance of its corresponding dual gat ...
2024
,
Hydraulic short circuit (HSC), corresponding to the simultaneous operation of the pumps and turbines, enhances the power flexibility of a pumped storage power plant (PSPP). However, comprehensive analyses are imperative to guarantee a secure and reliable o ...
Elsevier Sci Ltd2024
, , ,
The need of full transposition of the current carrying elements (strands) in large cables is frequently retained as top design criterion for conductors operating in pulsed mode. However, when the transposition error, i.e., the inductance difference among t ...