The permafrost carbon cycle or Arctic carbon cycle is a sub-cycle of the larger global carbon cycle. Permafrost is defined as subsurface material that remains below 0o C (32o F) for at least two consecutive years. Because permafrost soils remain frozen for long periods of time, they store large amounts of carbon and other nutrients within their frozen framework during that time. Permafrost represents a large carbon reservoir that is seldom considered when determining global terrestrial carbon reservoirs. Recent and ongoing scientific research however, is changing this view.
The permafrost carbon cycle deals with the transfer of carbon from permafrost soils to terrestrial vegetation and microbes, to the atmosphere, back to vegetation, and finally back to permafrost soils through burial and sedimentation due to cryogenic processes. Some of this carbon is transferred to the ocean and other portions of the globe through the global carbon cycle. The cycle includes the exchange of carbon dioxide and methane between terrestrial components and the atmosphere, as well as the transfer of carbon between land and water as methane, dissolved organic carbon, dissolved inorganic carbon, particulate inorganic carbon and particulate organic carbon.
Soils, in general, are the largest reservoirs of carbon in terrestrial ecosystems. This is also true for soils in the Arctic that are underlain by permafrost. In 2003, Tarnocai, et al. used the Northern and Mid Latitudes Soil Database to make a determination of carbon stocks in cryosols—soils containing permafrost within two meters of the soil surface. Permafrost affected soils cover nearly 9% of the earth's land area, yet store between 25 and 50% of the soil organic carbon. These estimates show that permafrost soils are an important carbon pool. These soils not only contain large amounts of carbon, but also sequester carbon through cryoturbation and cryogenic processes.
Carbon is not produced by permafrost.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course equips students with a comprehensive scientific understanding of climate change covering a wide range of topics from physical principles, historical climate change, greenhouse gas emissions
"Microbiology for engineers" covers the main microbial processes that take place in the environment and in treatment systems. It presents elemental cycles that are catalyzed by microorganisms and that
Arctic methane release is the release of methane from seas and soils in permafrost regions of the Arctic. While it is a long-term natural process, methane release is exacerbated by global warming. This results in a positive feedback cycle, as methane is itself a powerful greenhouse gas. The Arctic region is one of the many natural sources of the greenhouse gas methane. Global warming could potentially accelerate its release, due to both release of methane from existing stores, and from methanogenesis in rotting biomass.
In climate science, a tipping point is a critical threshold that, when crossed, leads to large and often irreversible changes in the climate system. If tipping points are crossed, they are likely to have severe impacts on human society. Tipping behavior is found across the climate system, in ecosystems, ice sheets, and the circulation of the ocean and atmosphere. Tipping points are often, but not necessarily, abrupt. For example, with average global warming somewhere between and , the Greenland ice sheet passes a tipping point and is doomed, but its melt would take place over millennia.
Explores polar and alpine climate change, mitigation strategies, and climate engineering, covering topics like greenhouse effect, Paris Agreement, IPCC reports, and extreme events.
The Global Arctic MOOC introduces you the dynamics between global changes and changes in the Arctic. This course aims to highlight the effects of climate change in the Polar region. In turn, it will u
Electron transfer to peat particulate organic matter (POM) as terminal electron acceptor (TEA) in anaerobic respiration has been hypothesized to lower methane emissions from peatlands by competitively suppressing methanogenesis and/or allowing for anaerobi ...
Gaseous carbon exchange at the water-air interface of rivers and lakes is an essential process for regional and global carbon cycle assessments. Many studies have shown that rivers surrounding urban landscapes can be hotspots for greenhouse gas (GHG) emiss ...
Streams and rivers emit substantial amounts of nitrous oxide (N2O) and are therefore an essential component of global nitrogen (N) cycle. Permafrost soils store a large reservoir of dormant N that, upon thawing, can enter fluvial networks and partly degrad ...