Summary
In telecommunications and computing, bit rate (bitrate or as a variable R) is the number of bits that are conveyed or processed per unit of time. The bit rate is expressed in the unit bit per second (symbol: bit/s), often in conjunction with an SI prefix such as kilo (1 kbit/s = 1,000 bit/s), mega (1 Mbit/s = 1,000 kbit/s), giga (1 Gbit/s = 1,000 Mbit/s) or tera (1 Tbit/s = 1,000 Gbit/s). The non-standard abbreviation bps is often used to replace the standard symbol bit/s, so that, for example, 1 Mbps is used to mean one million bits per second. In most computing and digital communication environments, one byte per second (symbol: B/s) corresponds to 8 bit/s. When quantifying large or small bit rates, SI prefixes (also known as metric prefixes or decimal prefixes) are used, thus: Binary prefixes are sometimes used for bit rates. The International Standard (IEC 80000-13) specifies different abbreviations for binary and decimal (SI) prefixes (e.g., 1 KiB/s = 1024 B/s = 8192 bit/s, and 1 MiB/s = 1024 KiB/s). In digital communication systems, the physical layer gross bitrate, raw bitrate, data signaling rate, gross data transfer rate or uncoded transmission rate (sometimes written as a variable Rb or fb) is the total number of physically transferred bits per second over a communication link, including useful data as well as protocol overhead. In case of serial communications, the gross bit rate is related to the bit transmission time as: The gross bit rate is related to the symbol rate or modulation rate, which is expressed in bauds or symbols per second. However, the gross bit rate and the baud value are equal only when there are only two levels per symbol, representing 0 and 1, meaning that each symbol of a data transmission system carries exactly one bit of data; for example, this is not the case for modern modulation systems used in modems and LAN equipment. For most line codes and modulation methods: More specifically, a line code (or baseband transmission scheme) representing the data using pulse-amplitude modulation with different voltage levels, can transfer bits per pulse.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related MOOCs (6)
Digital Signal Processing [retired]
The course provides a comprehensive overview of digital signal processing theory, covering discrete time, Fourier analysis, filter design, sampling, interpolation and quantization; it also includes a
Digital Signal Processing I
Basic signal processing concepts, Fourier analysis and filters. This module can be used as a starting point or a basic refresher in elementary DSP
Digital Signal Processing II
Adaptive signal processing, A/D and D/A. This module provides the basic tools for adaptive filtering and a solid mathematical framework for sampling and quantization
Show more