Side effect (computer science)In computer science, an operation, function or expression is said to have a side effect if it modifies some state variable value(s) outside its local environment, which is to say if it has any observable effect other than its primary effect of returning a value to the invoker of the operation. Example side effects include modifying a non-local variable, modifying a static local variable, modifying a mutable argument passed by reference, performing I/O or calling other functions with side-effects.
Syntax (programming languages)In computer science, the syntax of a computer language is the rules that define the combinations of symbols that are considered to be correctly structured statements or expressions in that language. This applies both to programming languages, where the document represents source code, and to markup languages, where the document represents data. The syntax of a language defines its surface form. Text-based computer languages are based on sequences of characters, while visual programming languages are based on the spatial layout and connections between symbols (which may be textual or graphical).
Function (computer programming)In computer programming, a function or subroutine is a sequence of program instructions that performs a specific task, packaged as a unit. This unit can then be used in programs wherever that particular task should be performed. Functions may be defined within programs, or separately in libraries that can be used by many programs. In different programming languages, a function may be called a routine, subprogram, subroutine, or procedure; in object-oriented programming (OOP), it may be called a method.
Stropping (syntax)In computer language design, stropping is a method of explicitly marking letter sequences as having a special property, such as being a keyword, or a certain type of variable or storage location, and thus inhabiting a different namespace from ordinary names ("identifiers"), in order to avoid clashes. Stropping is not used in most modern languages – instead, keywords are reserved words and cannot be used as identifiers.
Type classIn computer science, a type class is a type system construct that supports ad hoc polymorphism. This is achieved by adding constraints to type variables in parametrically polymorphic types. Such a constraint typically involves a type class T and a type variable a, and means that a can only be instantiated to a type whose members support the overloaded operations associated with T.
Bottom typeIn type theory, a theory within mathematical logic, the bottom type of a type system is the type that is a subtype of all other types. Where such a type exists, it is often represented with the up tack (⊥) symbol. When the bottom type is empty, a function whose return type is bottom cannot return any value, not even the lone value of a unit type. In such a language, the bottom type may therefore be known as the zero or never type. In the Curry–Howard correspondence, an empty type corresponds to falsity.
Agda (programming language)Agda is a dependently typed functional programming language originally developed by Ulf Norell at Chalmers University of Technology with implementation described in his PhD thesis. The original Agda system was developed at Chalmers by Catarina Coquand in 1999. The current version, originally known as Agda 2, is a full rewrite, which should be considered a new language that shares a name and tradition. Agda is also a proof assistant based on the propositions-as-types paradigm, but unlike Coq, has no separate tactics language, and proofs are written in a functional programming style.
C++11C++11 is a version of the ISO/IEC 14882 standard for the C++ programming language. C++11 replaced the prior version of the C++ standard, called C++03, and was later replaced by C++14. The name follows the tradition of naming language versions by the publication year of the specification, though it was formerly named C++0x because it was expected to be published before 2010. Although one of the design goals was to prefer changes to the libraries over changes to the core language, C++11 does make several additions to the core language.
Pure functionIn computer programming, a pure function is a function that has the following properties: the function return values are identical for identical arguments (no variation with local static variables, non-local variables, mutable reference arguments or input streams), and the function has no side effects (no mutation of local static variables, non-local variables, mutable reference arguments or input/output streams). Some authors, particularly from the imperative language community, use the term "pure" for all functions that just have the above property 2 (discussed below).
Monad (functional programming)In functional programming, a monad is a structure that combines program fragments (functions) and wraps their return values in a type with additional computation. In addition to defining a wrapping monadic type, monads define two operators: one to wrap a value in the monad type, and another to compose together functions that output values of the monad type (these are known as monadic functions). General-purpose languages use monads to reduce boilerplate code needed for common operations (such as dealing with undefined values or fallible functions, or encapsulating bookkeeping code).