Mott insulators are a class of materials that are expected to conduct electricity according to conventional band theories, but turn out to be insulators (particularly at low temperatures). These insulators fail to be correctly described by band theories of solids due to their strong electron–electron interactions, which are not considered in conventional band theory. A Mott transition is a transition from a metal to an insulator, driven by the strong interactions between electrons. One of the simplest models that can capture Mott transition is the Hubbard model.
The band gap in a Mott insulator exists between bands of like character, such as 3d electron bands, whereas the band gap in charge-transfer insulators exists between anion and cation states, such as between O 2p and Ni 3d bands in NiO.
Although the band theory of solids had been very successful in describing various electrical properties of materials, in 1937 Jan Hendrik de Boer and Evert Johannes Willem Verwey pointed out that a variety of transition metal oxides predicted to be conductors by band theory are insulators. With an odd number of electrons per unit cell, the valence band is only partially filled, so the Fermi level lies within the band. From the band theory, this implies that such a material has to be a metal. This conclusion fails for several cases, e.g. CoO, one of the strongest insulators known.
Nevill Mott and Rudolf Peierls also in 1937 predicted the failing of band theory can be explained by including interactions between electrons.
In 1949, in particular, Mott proposed a model for NiO as an insulator, where conduction is based on the formula
(Ni2+O2−)2 → Ni3+O2− + Ni1+O2−.
In this situation, the formation of an energy gap preventing conduction can be understood as the competition between the Coulomb potential U between 3d electrons and the transfer integral t of 3d electrons between neighboring atoms (the transfer integral is a part of the tight binding approximation). The total energy gap is then
Egap = U − 2zt,
where z is the number of nearest-neighbor atoms.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The aim of this course is to provide an introduction to the theory of a few remarkable phenomena of modern condensed matter physics ranging from the quantum Hall effects to superconductivity.
Ce cours de deux semestres donne une introduction à la Physique du solide, à la structure cristalline, aux vibrations du réseau, aux propriétés électroniques, de transport thermique et électrique ains
Strongly correlated materials are a wide class of compounds that include insulators and electronic materials, and show unusual (often technologically useful) electronic and magnetic properties, such as metal-insulator transitions, heavy fermion behavior, half-metallicity, and spin-charge separation. The essential feature that defines these materials is that the behavior of their electrons or spinons cannot be described effectively in terms of non-interacting entities.
The Hubbard model is an approximate model used to describe the transition between conducting and insulating systems. It is particularly useful in solid-state physics. The model is named for John Hubbard. The Hubbard model states that each electron experiences competing forces: one pushes it to tunnel to neighboring atoms, while the other pushes it away from its neighbors. Its Hamiltonian thus has two terms: a kinetic term allowing for tunneling ("hopping") of particles between lattice sites and a potential term reflecting on-site interaction.
In solid-state physics, the electronic band structure (or simply band structure) of a solid describes the range of energy levels that electrons may have within it, as well as the ranges of energy that they may not have (called band gaps or forbidden bands). Band theory derives these bands and band gaps by examining the allowed quantum mechanical wave functions for an electron in a large, periodic lattice of atoms or molecules.
Explores computational discovery of novel materials, focusing on quantum spin Hall insulators and topological phases in transition metal dichalcogenides.
Covers laser mediums and resonators, providing feedback for stimulated emission.
Explores electrical conductivity of metals, semiconductor properties, and energy bands.
Electron-rich organocerium complexes (C5Me4H)(3)Ce and [(C5Me5)(2)Ce(ortho-oxa)], with redox potentials E-1/2 = -0.82 V and E-1/2 = -0.86 V versus Fc/Fc(+), respectively, were reacted with fullerene (C-60) in different stoichiometries to obtain molecular m ...
The pyroresistive response of conductive polymer composites (CPCs) has attracted much interest because of its potential applications in many electronic devices requiring a significant responsiveness to changes in external physical parameters such as temper ...
We present an orbital-resolved extension of the Hubbard U correction to density-functional theory (DFT). Compared to the conventional shell-averaged approach, the prediction of energetic, electronic and structural properties is strongly improved, particula ...