Local martingaleIn mathematics, a local martingale is a type of stochastic process, satisfying the localized version of the martingale property. Every martingale is a local martingale; every bounded local martingale is a martingale; in particular, every local martingale that is bounded from below is a supermartingale, and every local martingale that is bounded from above is a submartingale; however, in general a local martingale is not a martingale, because its expectation can be distorted by large values of small probability.
SemimartingaleIn probability theory, a real valued stochastic process X is called a semimartingale if it can be decomposed as the sum of a local martingale and a càdlàg adapted finite-variation process. Semimartingales are "good integrators", forming the largest class of processes with respect to which the Itô integral and the Stratonovich integral can be defined. The class of semimartingales is quite large (including, for example, all continuously differentiable processes, Brownian motion and Poisson processes).
Random sequenceThe concept of a random sequence is essential in probability theory and statistics. The concept generally relies on the notion of a sequence of random variables and many statistical discussions begin with the words "let X1,...,Xn be independent random variables...". Yet as D. H. Lehmer stated in 1951: "A random sequence is a vague notion... in which each term is unpredictable to the uninitiated and whose digits pass a certain number of tests traditional with statisticians".
Stochastic processIn probability theory and related fields, a stochastic (stəˈkæstɪk) or random process is a mathematical object usually defined as a sequence of random variables, where the index of the sequence has the interpretation of time. Stochastic processes are widely used as mathematical models of systems and phenomena that appear to vary in a random manner. Examples include the growth of a bacterial population, an electrical current fluctuating due to thermal noise, or the movement of a gas molecule.
Conditional expectationIn probability theory, the conditional expectation, conditional expected value, or conditional mean of a random variable is its expected value – the value it would take "on average" over an arbitrarily large number of occurrences – given that a certain set of "conditions" is known to occur. If the random variable can take on only a finite number of values, the "conditions" are that the variable can only take on a subset of those values.
Quadratic variationIn mathematics, quadratic variation is used in the analysis of stochastic processes such as Brownian motion and other martingales. Quadratic variation is just one kind of variation of a process. Suppose that is a real-valued stochastic process defined on a probability space and with time index ranging over the non-negative real numbers. Its quadratic variation is the process, written as , defined as where ranges over partitions of the interval and the norm of the partition is the mesh.
Louis BachelierLouis Jean-Baptiste Alphonse Bachelier (baʃəlje; 11 March 1870 – 28 April 1946) was a French mathematician at the turn of the 20th century. He is credited with being the first person to model the stochastic process now called Brownian motion, as part of his doctoral thesis The Theory of Speculation (Théorie de la spéculation, defended in 1900). Bachelier's doctoral thesis, which introduced the first mathematical model of Brownian motion and its use for valuing stock options, was the first paper to use advanced mathematics in the study of finance.
Stopped processIn mathematics, a stopped process is a stochastic process that is forced to assume the same value after a prescribed (possibly random) time. Let be a probability space; be a measurable space; be a stochastic process; be a stopping time with respect to some filtration of . Then the stopped process is defined for and by Consider a gambler playing roulette. Xt denotes the gambler's total holdings in the casino at time t ≥ 0, which may or may not be allowed to be negative, depending on whether or not the casino offers credit.
Geometric Brownian motionA geometric Brownian motion (GBM) (also known as exponential Brownian motion) is a continuous-time stochastic process in which the logarithm of the randomly varying quantity follows a Brownian motion (also called a Wiener process) with drift. It is an important example of stochastic processes satisfying a stochastic differential equation (SDE); in particular, it is used in mathematical finance to model stock prices in the Black–Scholes model.