Martingale localeDans la théorie des processus stochastiques, une martingale locale est un processus stochastique qui est localement une martingale, ce qui signifie qu'il y a une suite de localisation de temps d'arrêt et que le processus arrêté est une martingale. Soi un espace de probabilité filtré et un processus -adapté avec (zéro à zéro). S'il existe une suite non décroissante de temps d'arrêt de telle que et pour tout le processus arrêté défini par soit une martingale, alors on appelle une martingale locale et on écrit .
SemimartingaleIn probability theory, a real valued stochastic process X is called a semimartingale if it can be decomposed as the sum of a local martingale and a càdlàg adapted finite-variation process. Semimartingales are "good integrators", forming the largest class of processes with respect to which the Itô integral and the Stratonovich integral can be defined. The class of semimartingales is quite large (including, for example, all continuously differentiable processes, Brownian motion and Poisson processes).
Suite aléatoirevignette|Cette suite est-elle aléatoire ? En mathématiques, une suite aléatoire, ou suite infinie aléatoire, est une suite de symboles d'un alphabet ne possédant aucune structure, régularité, ou règle de prédiction identifiable. Une telle suite correspond à la notion intuitive de nombres tirés au hasard. La caractérisation mathématique de cette notion est extrêmement difficile, et a fait l'objet d'études et de débats tout au long du . Une première tentative de définition mathématique (insatisfaisante) a été réalisée en 1919 par Richard von Mises.
Processus stochastiqueUn processus ou processus aléatoire (voir Calcul stochastique) ou fonction aléatoire (voir Probabilité) représente une évolution, discrète ou à temps continu, d'une variable aléatoire. Celle-ci intervient dans le calcul classique des probabilités, où elle mesure chaque résultat possible (ou réalisation) d'une épreuve. Cette notion se généralise à plusieurs dimensions. Un cas particulier important, le champ aléatoire de Markov, est utilisé en analyse spatiale.
Espérance conditionnelleEn théorie des probabilités, l'espérance conditionnelle d'une variable aléatoire réelle donne la valeur moyenne de cette variable quand un certain événement est réalisé. Selon les cas, c'est un nombre ou alors une nouvelle variable aléatoire. On parle alors d'espérance d'une variable aléatoire conditionnée par un événement B est, intuitivement, la moyenne que l'on obtient si on renouvelle un grand nombre de fois l'expérience liée à la variable aléatoire et que l'on ne retient que les cas où l'événement B est réalisé.
Variation quadratiqueEn mathématiques, la variation quadratique est utilisée dans l'analyse des processus stochastiques, comme le mouvement brownien et autres martingales. La variation quadratique est un type de variation d'un processus. Si est un processus stochastique à valeurs réelles défini sur un espace probabilisé et avec un indice de temps qui parcourt les nombres réels positifs, sa variation quadratique est le processus, noté , défini par : où parcourt les subdivisions de l'intervalle et la norme de la subdivision est son pas.
Louis BachelierLouis Jean-Baptiste Alphonse Bachelier est un mathématicien français, précurseur de la théorie moderne des probabilités, et fondateur des mathématiques financières né le au Havre et mort le à Saint-Servan-sur-Mer. Dans sa thèse de doctorat intitulée « Théorie de la spéculation », de son directeur de thèse Henri Poincaré, soutenue le à la Sorbonne de Paris, il introduit l'utilisation en finance du mouvement brownien (découvert par le biologiste botaniste Robert Brown), qui est à la base de la plupart des modèles de prix en finance, notamment la formule de Black-Scholes (1973).
Processus arrêtéEn théorie des probabilités, un processus arrêté est un processus stochastique qui garde la même valeur à partir d'un instant donné (éventuellement aléatoire). Par exemple, dans la modélisation d'un jeu d'argent, comme une succession de mises à la roulette, ce concept peut rendre compte de la notion d'arrêt au bout d'un certain nombre de parties, ou d'arrêt quand un certain seuil de gain ou de perte a été franchi, sans devoir écrire une modélisation spécifique pour chaque condition d'arrêt, mais en exploitant celle du « jeu de roulette infini » comme cadre général.
Geometric Brownian motionA geometric Brownian motion (GBM) (also known as exponential Brownian motion) is a continuous-time stochastic process in which the logarithm of the randomly varying quantity follows a Brownian motion (also called a Wiener process) with drift. It is an important example of stochastic processes satisfying a stochastic differential equation (SDE); in particular, it is used in mathematical finance to model stock prices in the Black–Scholes model.