Unstructured data (or unstructured information) is information that either does not have a pre-defined data model or is not organized in a pre-defined manner. Unstructured information is typically text-heavy, but may contain data such as dates, numbers, and facts as well. This results in irregularities and ambiguities that make it difficult to understand using traditional programs as compared to data stored in fielded form in databases or annotated (semantically tagged) in documents.
In 1998, Merrill Lynch said "unstructured data comprises the vast majority of data found in an organization, some estimates run as high as 80%." It's unclear what the source of this number is, but nonetheless it is accepted by some. Other sources have reported similar or higher percentages of unstructured data.
IDC and Dell EMC project that data will grow to 40 zettabytes by 2020, resulting in a 50-fold growth from the beginning of 2010. More recently, IDC and Seagate predict that the global datasphere will grow to 163 zettabytes by 2025 and majority of that will be unstructured. The Computer World magazine states that unstructured information might account for more than 70–80% of all data in organizations.
The earliest research into business intelligence focused in on unstructured textual data, rather than numerical data. As early as 1958, computer science researchers like H.P. Luhn were particularly concerned with the extraction and classification of unstructured text. However, only since the turn of the century has the technology caught up with the research interest. In 2004, the SAS Institute developed the SAS Text Miner, which uses Singular Value Decomposition (SVD) to reduce a hyper-dimensional textual space into smaller dimensions for significantly more efficient machine-analysis. The mathematical and technological advances sparked by machine textual analysis prompted a number of businesses to research applications, leading to the development of fields like sentiment analysis, voice of the customer mining, and call center optimization.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Explores gossip efficiency in decentralized systems, covering protocols, interaction needs, and bandwidth optimization, along with search algorithms and optimizations.
This course will take place from 3rd to 7th June 2024.It will introduce the workflows and techniques that are used for the analysis of bulk and single cell RNA-seq data. It will empower students to
The objective of this course is to present the main models, formalisms and algorithms necessary for the development of applications in the field of natural language information processing. The concept
Big data primarily refers to data sets that are too large or complex to be dealt with by traditional data-processing application software. Data with many entries (rows) offer greater statistical power, while data with higher complexity (more attributes or columns) may lead to a higher false discovery rate. Though used sometimes loosely partly because of a lack of formal definition, the interpretation that seems to best describe big data is the one associated with a large body of information that we could not comprehend when used only in smaller amounts.
Information extraction (IE) is the task of automatically extracting structured information from unstructured and/or semi-structured machine-readable documents and other electronically represented sources. In most of the cases this activity concerns processing human language texts by means of natural language processing (NLP). Recent activities in multimedia document processing like automatic annotation and content extraction out of images/audio/video/documents could be seen as information extraction Due to the difficulty of the problem, current approaches to IE (as of 2010) focus on narrowly restricted domains.
Data and information visualization (data viz or info viz) is the practice of designing and creating easy-to-communicate and easy-to-understand graphic or visual representations of a large amount of complex quantitative and qualitative data and information with the help of static, dynamic or interactive visual items.
Surrogate-based optimization is widely used for aerodynamic shape optimization, and its effectiveness depends on representative sampling of the design space. However, traditional sampling methods are hard-pressed to effectively sample high-dimensional desi ...
In the current era of big data, aggregation queries on high-dimensional datasets are frequently utilized to uncover hidden patterns, trends, and correlations critical for effective business decision-making. Data cubes facilitate such queries by employing p ...
Mapping the technology landscape is crucial for market actors to take informed investment decisions. However, given the large amount of data on the Web and its subsequent information overload, manually retrieving information is a seemingly ineffective and ...